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DFG-PCN: Point Cloud Completion with
Degree-Flexible Point Graph

Zhenyu Shu, Jian Yao*, Shiging Xin

Abstract—Point cloud completion is a vital task focused on reconstructing complete point clouds and addressing the incompleteness
caused by occlusion and limited sensor resolution. Traditional methods relying on fixed local region partitioning, such as k-nearest
neighbors, which fail to account for the highly uneven distribution of geometric complexity across different regions of a shape. This
limitation leads to inefficient representation and suboptimal reconstruction, especially in areas with fine-grained details or structural
discontinuities. This paper proposes a point cloud completion framework called Degree-Flexible Point Graph Completion Network
(DFG-PCN). It adaptively assigns node degrees using a detail-aware metric that combines feature variation and curvature, focusing on
structurally important regions. We further introduce a geometry-aware graph integration module that uses Manhattan distance for edge
aggregation and detail-guided fusion of local and global features to enhance representation. Extensive experiments on multiple
benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches.

Index Terms—Point Cloud, Graph-Based Neural Network, Point Cloud Completion.

1 INTRODUCTION

OINT clouds [1-3] serve as a widely adopted and easily
P accessible data format for representing 3D objects, play-
ing a crucial role in advancing research within computer
vision, particularly in the understanding of 3D scenes and
object structures [4-7]. The point clouds obtained from real-
world scenarios are frequently characterized by significant
sparsity and incompleteness. These challenges arise primar-
ily due to constraints such as restricted viewpoints, occlu-
sion caused by object self-geometry, and the limited resolu-
tion of sensing equipment. Therefore, recovering complete
point clouds is an essential downstream task, primarily
aimed at preserving the observed details, inferring missing
parts, and densifying sparse surfaces [8, 9].

In recent years, deep learning-based methods have been
developed for point cloud completion. Notably, with the
success of PointNet [10] and PointNet++ [11] in point cloud
deep learning, most methods [12-15] directly generate com-
plete point clouds based on 3D coordinates. Due to point
cloud data’s unordered and unstructured nature, learning
fine-grained geometric and structural features is essential
for generating plausible shapes.

Recent works [15-21] on point cloud completion are
typically formulated as a generation problem, primarily
utilizing an encoder-decoder structure to achieve this goal.
In this framework, the input partial point cloud is encoded
into a global feature vector and then decoded to recover a
complete point cloud from low to high resolution. However,
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Fig. 1. A comparative analysis of point cloud completion techniques
is presented. The input comprises 2048 points, while the ground truth
contains 16,384 points. Unlike methods like SeedFormer, our approach
reconstructs complete shapes with 16,384 points, offering superior ge-
ometric details, including clearly defined smooth surfaces (marked in
green) and reduced, well-distributed noise (marked in blue).

many existing methods face challenges due to the inherent
discreteness of point clouds and the unstructured nature of
local point predictions, making preserving structural consis-
tency within local patches challenging. Accurately capturing
fine-grained geometric details and structural characteristics
in complete shapes remains a significant challenge, espe-
cially in regions with smooth surfaces, sharp edges, and
corners, as illustrated in Figure 1.

Additionally, point cloud completion tasks exhibit a
clear imbalance in reconstruction requirements: while only a
small number of high-frequency points require intricate re-
construction, the majority of points lie in flat, low-frequency
regions that largely retain their geometric features. To
address this imbalance, an ideal point cloud completion
method should focus more on detail-rich areas and pay
less attention to flat, feature-sparse regions of the point
cloud. However, existing methods [11, 14, 16, 20] based
on k-nearest neighbors (KNN) treat all nodes equally. In
other words, all nodes have the same predefined degree k
without considering the imbalanced nature of point cloud
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completion.

When we analyze the classical operation paradigms in
point cloud completion from a graph perspective, we find
that the degree-equivalent property also exists in convo-
lution and attention mechanisms. Each point aggregates a
fixed number of neighboring points in these paradigms,
regardless of the point cloud’s content, which manifests
as “equal degrees” in graph terminology. In point cloud
completion, the fixed equal degree of nodes or points mis-
matches their unequal reconstruction demands, thereby im-
pacting the overall performance of point cloud completion.

To resolve this problem, we present the Degree-Flexible
Point Graph (DFG) model designed for point cloud comple-
tion, allowing for adaptive adjustment of node degrees. This
methodology represents fine-grained local and overarching
global geometric features of point cloud data, thereby boost-
ing completion performance. Given a partial point cloud,
the DFG framework uses a feature extraction mechanism
to reduce the point cloud’s scale and obtain initial point fea-
tures. These extracted features are inputs to a seed generator
to produce a sparse point cloud representing the complete
shape. Subsequently, an encoder with a flexible point cloud
graph structure takes the generated sparse point cloud as
input. It iteratively enhances its resolution until the target
resolution is achieved, thereby further optimizing the point
cloud completion.

To validate the proposed method’s effectiveness, we
evaluated four benchmark datasets: PCN [12], ShapeNet-
55, ShapeNet-34 [20], and KITTI [22]. Experimental results
demonstrate that the proposed approach can recover de-
tailed and plausible shapes for the missing parts, achieving
satisfactory outcomes. Our contributions are threefold:

e We introduce a new DFG-PCN model for point cloud
completion, designed to effectively learn both local
and global features while generating detailed point
cloud predictions.

o We propose a detail-aware degree allocation strategy
that leverages feature variation and curvature to
assign more connections to structurally important
regions adaptively.

e We develop a geometry-aware graph integration
module combining Manhattan-distance-based aggre-
gation and detail-guided local-global feature fusion,
improving structural consistency and detail preser-
vation.

The organization of this paper is as follows: Section 2
reviews prior work in the area of 3D point cloud comple-
tion. Section 3 details the flexible degree graph network
framework proposed in this study. In Section 4, we provide
comprehensive experimental results and benchmark com-
parisons. Finally, Section 5 outlines the method’s limitations
and explores potential future research avenues, and Section
6 offers a summary of conclusions.

2 RELATED WORK

Conventional point cloud completion approaches [23-25]
depend on manually designed features, including proper-
ties like surface smoothness or symmetry axes, to achieve
the reconstruction of complete point cloud shapes. Other

approaches [26, 27] extract local geometric information from
a large set of basic 3D structured shapes to build structural
local priors for partial shapes, aiding in completing complex
shapes. These methods depend on existing structured data
distributions, making it challenging to cover all possible
cases comprehensively.

Thanks to the rapid progress in deep learning, modern
techniques now leverage deep models for point cloud com-
pletion. The literature in this domain can be divided into
two primary types: voxel-based methods and point cloud-
based approaches for shape completion.

2.1 Voxel-based Shape Completion

Recent advances in deep neural networks have enabled
effective encoding of point cloud geometry for shape com-
pletion. Inspired by the success of CNNs in 2D image
analysis, some works extend this to 3D using voxel-based
representations and 3D CNNSs [9, 28-32].

For example, Han et al. [32] and GRNet [19] apply
3D CNNs to learn shape structures and complete point
clouds via voxel grids. However, these methods face high
computational costs and struggle to capture fine geometric
details due to information loss during voxelization and the
limitations of fixed grid structures.

2.2 Point-based Shape Completion

With the success of PointNet [10] indirectly processing 3D
coordinates, point-based methods have gradually become
the mainstream solution for point cloud completion tasks,
achieving significant progress. Building on previous work,
several point-based methods have been proposed. Some
of these approaches transform local regions into graph
structures, subsequently processed by graph convolution
layers [33-35]. Point feature learning has been inspired by
the success of image [36] and video [37] transformers, lead-
ing to the adoption of self-attention mechanisms [17, 20].
Additionally, adversarial learning has been used to improve
the realism of generated shapes, while cross-modal feature
learning facilitates shape reconstruction from images [38].

TopNet [39] presents a one-stage architecture that mod-
els point cloud generation as a tree-like process, where a
parent feature is split to generate multiple child features.
Although this method improves the decoder by incorpo-
rating a rooted tree structure, which enhances topological
reconstruction, the generated point features still lack precise
shape information in the incomplete regions, limiting their
ability to impose strong constraints.

Two-stage point cloud completion frameworks can im-
prove performance by applying more constraints during the
progressive generation from coarse to fine, thereby enhanc-
ing the accuracy of the resulting point clouds. PCN [12]
was the first learning-based approach to use an encoder-
decoder design. This method recovers point clouds through
two stages: first, the encoder extracts global features from
the input data, and then a MultiLayer Perceptron (MLP)
generates an initial coarse prediction, which is subsequently
refined into a more detailed result. Approaches such as
CDN [40] have expanded this method by increasing the
number of generation stages, leading to superior perfor-
mance. Several other methods [13, 14, 17] have achieved
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Fig. 2. (a) The overall architecture of DFG-PCN consists of three blocks: feature extractor, seed generation, and point generation. (b) The details
of the Degree-Flexible Graph Block are as follows: PointNet, Graph Construction Module, Graph Aggregation Module, Graph Fusion Module,
Deconvolution and MLP. Note that N, is the number of points, and C; is the number of point feature channels.

significant improvements by introducing additional stages,
enhancing feature extraction, or optimizing the generation
process structure. PointAttN [17] replaces the conventional
KNN-based local feature extraction with an attention mech-
anism, enabling more effective modeling of global depen-
dencies within point cloud structures. PPCL [41] intro-
duces a multi-layer contrastive learning framework align-
ing encoder-decoder features to optimize geometric con-
sistency, enhancing point cloud completion accuracy via
spatial-channel Transformer upsampling. By introducing a
latent diffusion-based framework [42] with dual-pathway
VAE modeling and cross-attention-driven global-local fu-
sion, PointLDM [43] provides new insights into point cloud
completion. Recent methods [14, 17, 41] incorporate global-
local fusion via attention or hierarchical encoding. However,
most apply uniform fusion strategies, failing to distinguish
the relative importance of different spatial regions, particu-
larly in detail-rich areas.

Our approach is part of the field of shape completion
methods based on point clouds. Our DFG approach utilizes
flexible graphs to adaptively focus on regions with richer
details, thereby enhancing the precision of point cloud com-
pletion.

3 METHODOLOGY

The DFG framework is depicted in Figure 2. Given an
incomplete and sparse point cloud P € R™»*3 as input, the
aim is to recover the missing parts and generate a full, dense
point cloud P; € RY3*3, This system follows a widely used
two-stage point cloud completion methodology. It com-
prises three main components: a feature extraction module,
a seed generation module, and a degree-flexible point graph
module.

3.1 DFG-PCN

Figure 2 depicts the overall structure of DFG-PCN, which
includes a feature extractor, a seed generator, and a point
generation module.

Feature extractor. The feature extractor is responsible for
extracting and integrating the input shape vector with the
features of individual points in the cloud. Denote the input
point cloud as P € RV*3 where N represents the number
of points, and each point corresponds to a 3D coordinate.
Using hierarchical aggregation, downsampling, and max-
pooling operations, we generate the shape vector f € RY,
as well as the downsampled partial points P, € RN»*3
and their associated feature vectors Fj € RN *XC where
N, refers to the number of points in the downsampled
partial point cloud. We apply three layers of set abstraction
from [11], which aggregate point features from local to
global levels. In addition, the Point Transformer [44] is
integrated to improve the capturing and incorporation of
local shape context.

Seed generator. The objective of the seed generator is
to produce a representation that incorporates coordinates
and features for a low-resolution, fully defined sketch point
cloud, referred to as the “seed.” To leverage the pow-
erful detail retention capabilities of the Upsample Trans-
former [14], the inputs £, F},, and P, are fed into the Upsam-
ple Transformer, which then generates point features. This
process helps capture the present and missing shape details
through point-level segmentation operations. Subsequently,
each generated point feature is combined with the shape
code using a MLP to create a coarse point cloud, denoted
as P. € RN<*3. The generated coarse point cloud is then
concatenated with the original input point cloud P € RV*3,
and this merged point cloud is downsampled using FPS [11]
toyield Py € RNox3 Here, N, denotes the number of points
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Fig. 3. The detailed structure of graph construction. The grey balls are
point features, and the red color’s depth represents the graph degree’s
size. The deeper the red, the higher the degree of the graph.

in the coarse point cloud, while Ny refers to the number of
points after downsampling the merged cloud. Finally, the
resulting downsampled point cloud, Py € RM*3, is used as
the seed point cloud for the point generation module.

Point generation. As shown in Figure 2 (b). The point
generation module consists of three steps of DFG; each block
has PointNet [10], Graph Construction Module , Graph Ag-
gregation Module, Graph Fusion Module, MLP, and Decon-
volution [45]. Given a rough point cloud P;_; € RNi-1xC
and f, we first adopt a PointNet [10] to learn per-point
features Q;_, € RNi-1XC Then, Q;_; € RVi-1%XC¢ and the
feature H;_; € RYi-1%¢ pagsed from the previous module
are used as the inputs for the graph construction to obtain
graph G;. Next, G; , QQ;_1, and H;_; are fed into graph
aggregation module and graph fusion module to capture
detail-rich geometric features and obtain feature H;. Finally,
we first duplicate the input point set P;,_; € RNi-1%3 to
obtain an intermediate set P; € R™i*3. Then, we employ
a MLP and Deconvolution to predict the offsets AP; for
each point, enabling us to obtain the upsampled coordinates
P, e RN X3,

3.2 Graph Construction

Traditional point cloud completion techniques often use
pooling operations to condense partial input observations
into a unified global feature vector. This vector is then
used during the decoding stage to reconstruct the shape.
However, these pooling operations can cause the loss of
crucial geometric details, which reduces the effectiveness of
global features for completing the point cloud. To resolve
this, we introduce a flexible degree point graph that operates
across both local and global scales within the DFG model.
This method fully capitalizes on the dynamic nature of the
graph structure, thereby improving the overall performance
of point cloud completion.

Degree Flexibility. Figure 3 illustrates the specific opera-
tions of the graph construction module. We assign different
node degrees to points based on a detail-rich metric, which
is used to identify points that require more reconstruc-
tion effort. Specifically, we denote a set of parent points
P;_; € RNi-1%3 obtained from the previous step. First, we
extract the per-point features Q;—1 € RYi=1XC from the
shape code f using the basic PointNet framework. These
features Q;—; € RMi-1XY are then fed into the graph
construction module for point cloud density allocation. In
the graph construction module, the downsampling ratio
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Fig. 4. Visualization of the detail richness metric. The left side displays
the incomplete input point cloud, and the right side shows the corre-
sponding complete reconstruction.

s is set to be 3 to prevent significant loss of geometric
information. We initially utilize Farthest Point Sampling
(FPS) [11] to perform downsampling on the point cloud,
yielding a set of downsampled points P; € RY¢*3 and
their corresponding features Qg € RNaxC where Ny in-
dicates the number of points in the downsampled cloud.
Subsequently, we perform interpolation upsampling on the
downsampled points to retrieve the points P, € RV*3
and corresponding features @, € RVXC. H, ; represents
the features extracted from the previous layer. The detail
richness metric for each point Dy € R” is defined as the
absolute difference between the feature maps after down-
sampling | and upsampling 1 and the original feature map:

Do =>1Q - Qu|+1Q— Hi_]. )
C

The overall degree budget is based on the degree assigned
to each point in the feature map, which is proportional to
its corresponding point value. To improve the sensitivity
of the graph structure to geometric variations, we integrate
curvature into the degree computation. While the detail
richness metric reflects variations in feature space, curvature
captures local geometric complexity. By combining these
two factors, the model can more effectively identify and
allocate more connections to structurally important points,
thereby improving overall reconstruction quality.

To further illustrate the effectiveness of the proposed
detail richness metric, we visualize its spatial distribution
in Figure 4. As shown, regions with complex geometry or
large missing parts—such as the airplane’s wingtips and the
lamp’s edges—are assigned higher detail-richness scores.
In contrast, flat and complete regions receive lower scores.
This distribution demonstrates that the proposed metric
effectively highlights structurally important areas, guiding
adaptive degree allocation and feature fusion in point cloud
completion.
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Fig. 5. An illustration of local graph (left) and global graph (right) sam-
pling strategies. In the local graph (left), the circled points represent
nodes selected from local neighborhoods to capture fine-grained details.
In the global graph (right), the circled points are sampled from the entire
point cloud to establish long-range contextual connections.

The degree d; assigned to each point is computed as
follows:

D;
d; =round (B X 72?:1 Di) ,

B= aZ(Di + Kq).

=1

(2a)
(2b)

Here, round(-) denotes standard rounding to the nearest
integer, D; represents the detail richness metric of point, n
represents the number of points in the point cloud within
the region, « is a scaling hyperparameter that controls the
overall connection budget, x,; denotes the curvature of point,
The total degree budget B is adaptively computed by incor-
porating both the detail metric and curvature, ensuring that
points in high-detail or highly curved regions receive more
connections, thereby enhancing reconstruction precision in
those areas.

Space Flexibility. We enhance the spatial flexibility of
the DFG through effective searching of connections between
local and global point nodes. Both local and global informa-
tion are crucial for point cloud processing. While the missing
parts of the point cloud can be reconstructed from local
regions, they can also learn from distant areas with similar
features for further refinement.

Existing graph-based algorithms have demonstrated
some degree of spatial flexibility. Unlike convolutional and
window attention mechanisms that consistently focus on
fixed neighboring regions, graph aggregation can flexibly
attend to crucial parts of the graph without spatial con-
straints. However, current graph-based methods still need
to improve spatial flexibility, primarily in their inability to
simultaneously integrate local and global information.

We aim to capture local and global features to enhance
efficiency in point cloud completion. Local features con-
tribute to detailed reconstruction, while global features are
derived from distant points. To achieve this balance, we
propose two sampling methods. These techniques effec-
tively gather information from local neighborhoods and
the overall point cloud. For local graph construction, we
adopt a fixed neighborhood size of & = 16, following
standard practice in prior point cloud learning works such
as PointNet++ [11], which has been widely validated for
balancing local geometric representation and computational

efficiency. For the global graph, we sample a fixed number
of 512 points using FPS to ensure broad spatial coverage
across the entire point cloud, enabling long-range contextual
information to be captured effectively. As illustrated in
Figure 5, local sampling focuses on densely connected re-
gions to preserve fine-grained details, while global sampling
captures semantically relevant but spatially distant regions
to enhance structural coherence.

3.3 Graph Feature Integration

Figure 6 shows the structure of Graph Aggregation. After
constructing the flexible graph structure, we proceed with
graph aggregation, enabling each node to communicate
effectively with its connected neighbors and utilize their
information for self-optimization, thereby enhancing point
cloud completion. In the application of graphs to point
clouds, aggregation methods such as max pooling or edge-
conditioned forms are typically preferred. We favor edge-
conditioned aggregation because max pooling can signifi-
cantly lose vital information from neighboring points, which
is crucial for point cloud tasks. To improve the geometric
sensitivity of the graph aggregation process, we incorpo-
rate the Manhattan distance into the computation of edge
weights. Unlike Euclidean distance, which treats all spatial
directions uniformly, Manhattan distance exhibits greater
sensitivity to axis-aligned variations, making it more ef-
fective for capturing directional structures, boundary tran-
sitions, and geometric discontinuities. This choice is mo-
tivated by prior work in point cloud understanding [46],
where a relative positional encoding based on Manhattan
distance was shown to enhance the representation of local
geometric relationships. Inspired by this insight, we inte-
grate Manhattan distance into our edge-conditioned aggre-
gation framework to better capture fine-grained structural
cues. Since point cloud completion relies heavily on pre-
serving detailed local geometry, adopting such a direction-
sensitive distance metric enables more informative feature
propagation. In addition, edge-conditioned aggregation in-
herently emphasizes feature interactions between connected
nodes, allowing our approach to retain richer neighborhood
information critical for accurate reconstruction.

The mathematical formulation for edge-conditioned ag-
gregation in the i-th layer of DFG is as follows: Given the
node features f} € F; as input and the set of adjacent nodes
N (j), the output for node j is computed as h;

iy =Bi (f+0)© (fi +0)+C x (=Gi) + M), (3a)

M=~ (|2 —ab| + [yt —wi| + |20 —24]).  @3b)

where (; is a linear projection function implemented with
MLP, 6 is a positional encoding vector to enhance spa-
tial relation information, -y represents a hyperparameter, ©
is a parameterized function that measures the similarity
between node pairs (i,5), C is a negative constant, and
—G; represents the logical negation operation on the graph,
indicating nodes that are not connected in the graph, M ; &
represents the Manhattan distance between two points. Ad-
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ditionally, to normalize the computed weights for balancing
the scale, a} , is applied using the softmax function:

()
aj,k ~ .
2 ken(j) eXP (aj,k)

Finally, the features after graph aggregation can be ob-

tained as follows:
> o (mt ),
keN(5)

(4)

©)

where, ® is Hadamard product, and h;:l is from the previ-
ous module after graph aggregation.

However, due to the significant variation in detail rich-
ness across different point cloud regions, relying on a single-
scale aggregation strategy remains insufficient for modeling
complex geometric structures. To address this issue, we
introduce the Graph Fusion Module (GFM), as illustrated
in Figure 7, which further integrates features from both
local and global graphs to enhance overall representation
capability.

Specifically, for the features within each region, guided
by the detail richness metric of the region, we first transform
these features into query, key, and value tokens through
linear projection. Subsequently, we compute self-attention
weights among regions and normalize these weights using
a softmax function to achieve adaptive weighted integration
of regional features, thereby emphasizing those critical to
detail reconstruction. Additionally, to leverage the com-
plementary nature of multi-scale information, we further
fuse the local and global scale features through a linear

transformation after processing by the two-scale attention
modules. This fusion effectively enhances the integrity of
feature representation, ensuring that the model simultane-
ously preserves the precision of local structures and the
consistency of global structures.

Q=HWy, K=HWg, V=HWy,. (6b)
QK"
H; =soft — V. 6
; =softmax( \/@) (6¢)
Q=HWqy, K=HWg, V=HWy, (73
5 5 \T
H; = softmax( (Q+ Hy)(K + H,) W. (7b)

Vi

Where H; denotes the output feature of the local graph
fusion, h; represents the feature of local graph at layer i, D;-
represents detail richness of the region, Wqo, Wi, Wy, are
learnable projection matrices for queries, keys, and values,
respectively. @, K,V denote the projected query, key, and
value embeddings. The scalar dj, is the dimensionality of
the key vector and is used for scaling during attention
computation. ﬁg represents the global graph feature after
linear transformation.

3.4 Training Loss

For training, we use Chamfer Distance (CD) [47] as a metric
to compute the point cloud loss. Given the predicted set of
point clouds { Py, Py, P2, P5} and the corresponding ground
truth set {Sp, 51,52, S5}, both generated through FPS, the
model’s loss function can be formulated as follows:

L=7) CD(F;,8S)),

=0

®)

The term CD refers to the loss of chamfer distance, which
can be defined as follows:

E mll’l p—S + — E mll’l S—Dp

CD(P,S) =
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TABLE 1
The results of the PCN dataset indicate the ¢; Chamfer Distance multiplied by 103, with lower values reflecting better performance. The best
results are highlighted in bold.

Methods ‘ Average Plane Cabinet Car Chair Lamp Couch Table Boat
FoldingNet [48] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
PCN [12] 9.64 5.50 22.70 10.63 8.70 11.00 11.37 11.68 8.59
TopNet [39] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
AtlasNet [49] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
GRNet [19] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PoinTr [20] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29
CRN [40] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
NSFA [50] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 748
SnowFlake [13] 721 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
FBNet [18] 6.94 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18
SeedFormer [14] 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85
AnchorFormer [15] 6.59 3.70 8.94 7.57 7.05 5.21 8.40 6.03 5.81
POINTATTN [17] 6.86 3.87 9.00 7.63 7.43 5.90 8.68 6.32 6.09
AdaPoinTr [16] 6.53 3.68 8.82 7.47 6.85 5.47 8.35 5.80 5.76
Ours ‘ 6.42 3.62 8.63 7.56 6.71 4.99 8.41 5.78 5.68

4 EXPERIMENTS

To thoroughly validate the effectiveness of our DFG-PCN,
we perform extensive experiments on four widely rec-
ognized benchmarks: PCN [12], ShapeNet-55, ShapeNet-
34 [20] and KITTI [22]. The results demonstrate that our
method is more effective than the current state-of-the-art
techniques in point cloud completion.

4.1 Dataset and Evaluation Metric

The PCN Dataset. The PCN dataset, as introduced by Yuan
et al. [51]. It includes paired data sets of partial and complete
point clouds, making it ideal for point cloud completion
tasks. To ensure consistency with prior work [12-14], we
adopt the same approach for data partitioning during train-
ing and evaluation. Specifically, the dataset is split into
28,974 training samples, 800 validation samples, and 1,200
test samples. Additionally, to normalize the point cloud
sizes, we resample all incomplete point clouds to 2,048
points, addressing variability in point counts while align-
ing with standard practices. This ensures uniformity across
experiments, enabling reliable comparison and evaluation.

ShapeNet-55 Dataset. The ShapeNet-55 dataset [20] is a
large-scale repository of 3D object models constructed based
on the ShapeNet dataset [51]. It encompasses a diverse range
of everyday object categories, making it a comprehensive re-
source for 3D shape analysis tasks. The ShapeNet-55 dataset
contains 3D shapes across 55 categories, with 41,952 models
allocated for training and 10,518 models for testing. In our
experiments conducted on the ShapeNet-55 benchmark, we
adhere to the experimental setup of PoinTr [20], ensuring
that the evaluation process is consistent and comparable
with prior research. This adherence allows for an objective
and fair performance comparison across different models
and approaches within the same framework.

ShapeNet-34 Dataset. The ShapeNet-34 dataset [20]
comprises 46,765 3D objects spanning 34 different cate-
gories. The test set is divided into two parts: 3,400 objects
from the 34 visible categories and 2,305 objects from 21

unseen categories. This allows for evaluating both within-
category and cross-category generalization. In line with
previous research [15, 16, 20], we evaluate models on point
cloud data with varying levels of incompleteness, specifi-
cally where 25%, 50%, and 75% of points are missing. These
levels of missing data represent three different degrees of
difficulty for the completion task: easy (S), medium (M), and
hard (H), respectively, offering a comprehensive evaluation
across different scenarios.

KITTI Dataset. To assess the effectiveness of the pro-
posed model on real-world scanned data, we conduct ad-
ditional experiments using the KITTI [22] dataset, which
comprises sequences of LiDAR scans captured from out-
door environments. Car instances are isolated in each frame
based on their 3D bounding boxes, resulting in 2,401 partial
point clouds. Unlike synthetic datasets, KITTI features real-
world data that is often highly sparse and lacks complete
ground-truth point clouds, presenting greater challenges for
point cloud completion. Following the standard evaluation
protocol adopted in [14, 15], all car shapes in the KITTI
dataset are used solely for testing. The models are trained
on the car subset of the PCN dataset [12], which contains
complete car shapes. This setup verifies the model’s ability
to generalize from synthetic training data to sparse, incom-
plete real-world scans.

Evaluation metrics. To assess the performance of dif-
ferent algorithms quantitatively, we employ two widely
used metrics: CD-¢; and CD-/5. Both are based on CD,
where lower values signify better performance, reflecting
the closeness between the predicted and ground truth point
clouds. For the KITTI benchmark, we adopt two quan-
titative metrics, Minimal Matching Distance (MMD) and
Fidelity Distance (FD), to evaluate completion performance
derived from the CD. MMD is computed using the CD
and reflects the similarity between the completed output
and a reference shape from ShapeNet, thereby evaluating
how well the generated output aligns with typical object ge-
ometries. In contrast, FD quantifies the geometric fidelity of
the completion by computing the average nearest-neighbor
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Fig. 8. Three visual examples of point cloud completion outcomes from various PCN dataset methods are shown. Different colors represent the

point clouds reconstructed by each approach.
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Fig. 9. Qualitative results on ShapeNet-55. From top to bottom, 25%,
50%, and 75% of the point cloud are masked, respectively.

distance from each point in the input to the output, reflect-
ing how accurately the model preserves the observed input
structure. These metrics provide a robust means to assess
the accuracy and quality of 3D point cloud completion.

Implementation Details. The PyTorch framework is

used to implement DFG-PCN. The model is trained on an
NVIDIA GTX 4090 GPU with a batch size 32. We use the
Adam optimizer [54], with hyperparameters 81 = 0.9 and
B2 = 0.99. The learning rate is initialized at 0.001 and is
reduced by a factor of 0.1 every 100 epochs. The training
process spans 400 epochs, using the PCN dataset [12] and
the ShapeNet-55 and ShapeNet-34 datasets [20].

4.2 Results

Evaluation on PCN Dataset. Table 1 provides the quanti-
tative evaluation of our method against other techniques
across eight categories from the PCN dataset. Our method
stands out with a notable average CD-{; score of 6.42,
reflecting a clear improvement over existing approaches.
Compared with the second-best method, AdaPoinTr [16],
our approach reduces 0.11 in the average CD, equating to
a 1.68% lower score (6.42 compared to 6.53). While some
previous works in Table 1 adopt similar coarse-to-fine strate-
gies, DFG-PCN surpasses them by leveraging several novel
design features. These results underscore the importance of
learning robust feature representations for effective shape
reconstruction.
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TABLE 2

The results of the ShapeNet-55 dataset indicate the ¢2 Chamfer Distance multiplied by 103, with lower values reflecting better performance. The
best results are highlighted in bold.

Methods Table  Chair pj?;fle Car Sofa }If(l)iie Bag  Remote 15) ea}; q Rocket | CD-5 CD-M  CD-H | CD-Avg
FoldingNet [48] | 2.53 2.81 143 198 248 | 471 279 1.44 1.24 1.48 2.67 2.66 4.05 3.12
PENet [52] 3.95 4.24 181 253 334 | 621 496 291 1.29 2.36 3.83 3.87 7.97 522
TopNet [39] 2.21 2.53 114 228 236 | 483 293 1.49 0.95 1.32 2.26 2.16 4.30 291
PCN [12] 2.13 2.29 1.02 185 206 | 450 286 1.33 0.89 1.32 1.94 1.96 4.08 2.66
GRNet [19] 1.63 1.88 1.02 164 172 | 297 206 1.09 0.89 1.03 1.35 171 2.85 1.97
PoinTr [20] 0.81 0.95 044 091 079 | 186 093 0.53 0.38 0.57 0.58 0.88 1.79 1.09
SnowFlake [13] 0.98 1.12 0.54 - - 193 108 - 0.48 - 0.70 1.06 1.96 1.24
SeedFormer [14] | 0.72 0.81 040 089 071 | 1.51 0.79 0.46 0.36 0.50 0.50 0.77 1.49 0.92
ODGNet [53] - - - - - - - - - - 0.47 0.70 1.32 0.83
PPCL [41] 0.92 0.98 052 094 087 | 156 098 0.51 0.41 0.50 0.61 0.95 1.89 1.15
Ours ‘ 0.64 0.77 034 085 0.64 | 142 0.78 0.40 0.35 0.48 0.45 0.67 1.26 0.79

TABLE 3

The results of the ShapeNet-34 dataset indicate the ¢> Chamfer Distance multiplied by 102, with lower values reflecting better performance. The
best results are highlighted in bold.

34 seen categories 21 unseen categories
Methods CD-S CD-M CD-H CD-Avg CD-S CD-M CD-H CD-Avg
FoldingNet [48] 1.86 1.81 3.38 2.35 2.76 2.74 5.36 3.62
TopNet [39] 1.77 1.61 3.54 2.31 2.62 243 5.44 3.50
PCN [12] 1.87 1.81 297 2.22 3.17 3.08 5.29 3.85
PENet [52] 3.16 3.19 7.71 4.68 5.29 5.87 13.33 8.16
GRNet [19] 1.26 1.39 2.57 1.74 1.85 2.25 4.87 2.99
PoinTr [20] 0.76 1.05 1.88 1.23 1.04 1.67 3.44 2.05
SnowFlake [13] 0.60 0.86 1.50 0.99 0.88 1.46 2.92 1.75
ProxyFormer [55] 0.44 0.67 1.33 0.81 0.60 1.13 2.54 1.42
SeedFormer [14] 0.48 0.70 1.30 0.83 0.61 1.07 2.35 1.34
PPCL [41] 0.62 0.95 1.87 1.15 0.81 1.35 292 1.69
ODGNet [53] 0.44 0.64 1.14 0.75 0.59 1.01 2.26 1.29
Ours \ 0.42 0.61 112 0.72 \ 0.57 0.96 2.15 1.22
el % :
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Fig. 10. Qualitative results on ShapeNet-34 seen categories. From top to

bottom, 25%, 50%, and 75% of the point cloud are masked, respectively. Fig. 11. Qualitative results on ShapeNet-34 unseen categories. From

top to bottom, 25%, 50%, and 75% of the point cloud are masked,
respectively.

Figure 8 further visualizes three selected categories and

directly compared the previous state-of-the-art methods.
In particular, our method is capable of generating higher-
quality object shapes, characterized by smoother surfaces
(e.g., the body of an airplane) and more detailed local
structures (e.g., the handle and lampshade of a lamp).

Additionally, the point clouds produced by our method
exhibit less noise. In contrast, other algorithms [14, 20] may
generate blurry shapes, often accompanied by outlier points
scattered outside the main structure.

Evaluation on ShapeNet-55. We evaluate the effective-
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Fig. 12. Qualitative results on KITTI dataset. We propose point cloud completion results of two car shapes in two different views.

TABLE 4
Quantative comparison on KITTI dataset in terms of FD and MMD.

| PCN  SnowFlake SeedFormer PointAttN | Ours
FDJ 2.235 0.110 0.151 0.672 0.097
MMD| | 1.366 0.907 0.516 0.504 0.463

ness of DFG-PCN on the ShapeNet-55 dataset [20], which
features a more diverse set of categories. Table 2 shows the
{5 Chamfer Distance (CD-/5) results for different methods.
Specifically, we report the average CD-{5 scores across all
categories, along with the CD-{; performance on point
clouds with varying masking ratios, namely CD-S, CD-
M, and CD-H. Additionally, we provide CD-/; results for
the five categories with the largest training samples: table,
chair, airplane, car, and sofa, each with over 2,500 samples.
In contrast, we also present the CD-¢; results for the five
categories with the fewest training samples (birdhouse, bag,
remote, keyboard, and rocket), each containing fewer than
80 samples. Our method consistently outperforms others
across various conditions and perspectives. These findings
highlight the model’s exceptional ability to capture 3D
shape information.

Figure 9 illustrates the point cloud completion results
from easy to hard on the ShapeNet-55 dataset. In the
easy mode, our method can complete the missing point
cloud without altering the overall shape. Even with sig-
nificant missing information, our method still reconstructs
a complete shape in the moderate and challenging modes,
whereas PoinTr [20] fails to achieve satisfactory results. This
demonstrates the effectiveness of our approach.

Evaluation on ShapeNet-34. The ShapeNet-34 bench-
mark [20] rigorously tests the generalization capability of
models by evaluating their performance on 21 previously
unseen categories. This ensures that the models are not
merely overfitting to known categories but can effectively
generalize to novel, unseen objects, providing a compre-
hensive assessment of their robustness and adaptability in

Input w/o A and B w/ A w/B w/ A and B GT

Fig. 13. Visual comparison of different model variants. Adding geometric
features (A) and the graph fusion module (B) leads to more accurate and
detailed reconstructions.

handling diverse 3D shapes. Table 3 presents a compre-
hensive analysis of the CD-{3 performance for both seen
categories and unseen classes. This is notable given the sub-
stantial shape variations between the training dataset and
the unseen test data. Our DFG-PCN not only achieves the
best average CD-{, performance across both types of objects
but also demonstrates a generalization ability that surpasses
other methods [13, 14] by nearly 8.9%. Additionally, DFG-
PCN significantly enhances performance at the CD-H level,
even when some inputs contain only 25% of unseen objects.

As shown in Figures 10 and 11, we present the visu-
alization results for both seen and unseen categories. Our
completion results remain outstanding, especially when the
missing shapes are regular. Our results are very close to the
ground truth. This indicates that the method demonstrates
strong performance and generalization ability.

Evaluation on KITTI We further evaluate our approach
on real-world datasets. As shown in Table 4, our method
consistently achieves superior performance compared to
other methods in terms of both FD and MMD, demonstrat-
ing its strong ability to capture the 3D geometric character-
istics of vehicles.

Additionally, qualitative results in Figure 12 present
two completion examples from different viewpoints. Our
method produces more accurate and visually coherent com-
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TABLE 5 TABLE 7
Ablation study between KNN and Degree-Flexible Point Graph on the Comparison of curvature and detail richness metric on the PCN
PCN dataset. dataset.
Variations CD-¢; Metrics CD-¢;
KNN 6.56 Curvature 6.67
Degree-Flexible 6.42 Detail Richness Metric 6.48
TABLE 6 TABLE 8
Ablation study of local and global graph usages on the PCN dataset. Ablation study of geometric feature and graph fusion usages on the
PCN dataset.
local graph global graph CD-£y
v 653 geometric feature graph fusion CD-4
v 6.49 6.48
v v 6.42 v 6.46
v 6.44
v v 6.42

pletions with finer local details and clearer structural pat-
terns.

4.3 Ablation study

In this section, we present a series of ablation studies de-
signed to evaluate the effectiveness of the proposed opera-
tions. All experiments are conducted under consistent set-
tings on the PCN dataset [12] to ensure fair comparisons. By
systematically removing or modifying specific components
of our model, we aim to assess their individual contributions
to the overall performance, providing deeper insights into
the impact of each operation on the shape completion task.
Effectiveness of Degree-Flexible Point Graph. In typ-
ical applications of point cloud tasks, KNN graphs are
commonly used for graph construction. However, KNN has
its limitations, as all nodes are connected to a fixed number
of neighboring nodes. To enhance flexibility, we propose an
adaptive graph construction scheme that accounts for the
unbalanced point demands in point cloud completion tasks.
This scheme dynamically adjusts the connection structure
based on the varying needs of different nodes, effectively
catering to the diverse information requirements of each
node in the graph. We compare the performance of KNN
and DFG under the same settings. Table 5 demonstrates
the improvements. Notably, our method exhibits significant
and direct improvements over the KNN approach, where
the CD-/¢; is reduced from 6.42 to 6.56, indicating a relative
improvement of 2.1%. This ablation study demonstrates
that our method generates point clouds that are capable of
retaining finer and more detailed shape information.
Effectiveness of Global and Local Graphs. In the design
of DFG, we aggregate information from both local and
global scales through local and global point node sampling.
As shown in Table 6, we conduct experiments using only
local or global scale graphs under the same settings and
compare them with the experiments of the original version
of DFG. We remove the global graph or the local graph sep-
arately. However, both perform worse compared to global
graph and local graph, highlighting the importance of the
combination of local and global graph aggregation.
Effectiveness of Detail Richness Metric. To validate the
effectiveness of our detail richness metric, we compare it
with a classical geometric descriptor—curvature. Although
curvature reflects local surface variation and is widely used
in 3D geometry tasks, it lacks awareness of feature-space

complexity and semantic importance. As shown in Table
7, when using curvature alone to guide the graph degree
allocation, the model achieves a CD-{; of 6.67 on the
PCN dataset. In contrast, using our detail richness metric
results in a lower CD-{; of 6.48, demonstrating a clear
improvement in reconstruction quality. This performance
gap suggests that the detail richness metric offers superior
guidance, especially in identifying semantically complex
or structurally incomplete regions that may not exhibit
strong geometric curvature. Unlike curvature, which only
responds to geometric shape variation, our feature-based
metric captures learned feature inconsistency and geometric
information, providing a more comprehensive signal for
adaptive graph construction.

Effectiveness of Geometric Feature and Graph Fusion.
We conducted an ablation study to validate the effectiveness
of the geometric feature and Graph Fusion Module (GFM).
As shown in Table 8, removing both geometric features and
GFM yields a baseline CD-¢; of 6.48. Individually incorpo-
rating geometric features or GFM reduces the CD-/; to 6.46
and 6.44, respectively, highlighting their contributions in en-
hancing local detail perception and integrating multi-scale
features. Utilizing both modules simultaneously achieves
the best performance. Additionally, the visualization results
in Figure 13 clearly illustrate that models equipped with
geometric features and GFM reconstruct more accurate and
detailed local structures, demonstrating their complemen-
tary roles in improving completion quality and structural
consistency.

5 LIMITATION AND FUTURE WORK

Our method has a few limitations that open up possibili-
ties for future improvements. First, while a flexible graph
structure for point cloud processing has been implemented,
there is still room for optimization in how the graph is
constructed. Enhancing the graph’s ability to establish ef-
fective connections and ensure smooth information transfer
between nodes will be a priority. Future research will focus
on devising adaptive algorithms for graph connections that
can adjust according to the distinct shape characteristics
of point clouds. Secondly, since we currently handle each
dataset independently for training and prediction, the abil-
ity to generalize across datasets remains an issue. Some
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datasets” small sizes and differences limit the model’s ability
to be widely applicable. To address this, future efforts will
be directed at developing methods to improve cross-dataset
generalization and strengthen the robustness of the model
overall.

6 CONCLUSION

In this paper, we present a novel point cloud completion
method designed to alleviate the bottleneck of two-stage
frameworks, with a particular focus on the second stage.
Our approach introduces a newly designed flexibility graph
to recover fine-grained shape information for the missing
parts. It enhances the ability to represent seed points by ag-
gregating global and local graphs. The experimental results
highlight the benefits of our method, while qualitative eval-
uations of point cloud completion showcase its capability to
represent intricate geometric details and effectively recon-
struct missing areas accurately. Expanding this approach
to related tasks, such as point cloud reconstruction and
upsampling, offers a promising direction for future research.
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