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StrucADT: Generating Structure-controlled 3D
Point Clouds with Adjacency Diffusion

Transformer
Zhenyu Shu, Jiajun Shen*, Zhongui Chen, Xiaoguang Han, and Shiqing Xin

Abstract—In the field of 3D point cloud generation, numerous 3D generative models have demonstrated the ability to generate diverse
and realistic 3D shapes. However, the majority of these approaches struggle to generate controllable 3D point cloud shapes that meet
user-specific requirements, hindering the large-scale application of 3D point cloud generation. To address the challenge of lacking
control in 3D point cloud generation, we are the first to propose controlling the generation of point clouds by shape structures that
comprise part existences and part adjacency relationships. We manually annotate the adjacency relationships between the segmented
parts of point cloud shapes, thereby constructing a StructureGraph representation. Based on this StructureGraph representation, we
introduce StrucADT, a novel structure-controllable point cloud generation model, which consists of StructureGraphNet module to
extract structure-aware latent features, cCNF Prior module to learn the distribution of the latent features controlled by the part
adjacency, and Diffusion Transformer module conditioned on the latent features and part adjacency to generate structure-consistent
point cloud shapes. Experimental results demonstrate that our structure-controllable 3D point cloud generation method produces
high-quality and diverse point cloud shapes, enabling the generation of controllable point clouds based on user-specified shape
structures and achieving state-of-the-art performance in controllable point cloud generation on the ShapeNet dataset.

Index Terms—3D point cloud generation, Structure control, Diffusion Transformer

✦

1 INTRODUCTION

3D shape generation [1], [2] is a fundamental task in com-
puter graphics, holding significant importance across

various domains, including modeling, animation, and gam-
ing industries. The field of 3D shape generation has wit-
nessed substantial progress, with numerous state-of-the-art
methods and applications emerging in voxels [3], [4], [5],
[6], [7], [8], point clouds [9], [10], [11], [12], meshes [13],
[14], [15], [16], [17], [18], and structured representations [19],
[20], [21], [22], [23]. 3D point cloud shape data can be easily
obtained through 3D scanners, making the generation of
3D point cloud shapes a topic of extensive attention and
research.

In the realm of 3D point cloud generation, many 3D
generative models, such as PointFlow [9], DPM [10], Point-
E [11], and DiffFacto [12], have shown proficiency in produc-
ing diverse and realistic 3D shapes. Methods like PointFlow,
DPM, and DiffFacto treat the 3D point cloud generation
process as a distribution of distributions [9], first sampling
from the overall shape distribution of a class of point clouds
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Fig. 1. (a) The Armrest-Seat structure to control the chair generated
with the armrest attached to the seat, (b) the Armrest-Back structure
to control the chair generated with the armrest attached to the back,
(c) the Back-Armrest-Seat structure to control the chair generated with
the armrest attached to the back and the seat, and (d) the No-Armrest
structure to control the chair generated without the armrest.

and then sampling the distribution of points from the given
shape, thus enabling the generation of point clouds with an
arbitrary number of points. These methods employ flow-
based models [24], [25], [26], [27] or diffusion models [28],
[29], [30], [31], [32], [33], [34], [35] to learn the aforemen-
tioned distributions.

However, most of these approaches struggle to generate
controllable 3D point cloud shapes. These methods can
only learn to approximate the shape distribution from the
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dataset and sample point cloud shapes from the learned
distribution, but they lack the ability to control the genera-
tion of shapes that meet user-specific requirements, as users
usually want to generate shapes that fit their needs. Some
multimodal generation methods, such as Point-E [11], can
control the generation process with text or image conditions.
However, these methods require text or image data match-
ing the point cloud shapes, thus necessitating extensive
manual annotation, which is costly and challenging.

In order to address the challenge of lacking control in 3D
point cloud generation, we explore the inherent structure
of 3D shapes. The structure of a shape is whether the parts
that make up the shape appear and whether these parts
are adjacent. For shapes within the same category, although
their overall geometric profile may vary significantly, their
structures remain similar [36]. For example, a chair is typi-
cally composed of the back, seat, legs, and armrests, where
the seat is usually adjacent to the back and legs. The core
observation of this paper is leveraging the structure of
3D point cloud shapes to better control their generation.
Figure 1 shows that different structures of the chair are able
to control the generation of chairs with different styles: a
chair generated with armrests attached to the seat or the
back or both the seat and the back, or even without the
armrests. By introducing the shape structure, it becomes
possible to control the generation of 3D point cloud shapes
explicitly and more precisely.

However, existing 3D shape segmentation datasets [22],
[37], [38], [39], [40] only provide semantic segmentation
labels without the connectivity information between parts.
Although StructureNet [20] represents shapes as n-ary part
hierarchies with adjacency between sibling parts, they sim-
ply compute the minimum distance between two segmented
parts to obtain the part adjacency on the PartNet [22]
dataset. In contrast, we manually annotate the adjacency
relationships between segmented parts on the widely used
ShapeNet dataset, forming StructureGraph representation for
point cloud shapes to control their generation more pre-
cisely. In this graph, nodes represent the segmented parts
of a point cloud shape, while edges denote the connections
between these segmented parts.

To control the 3D point cloud generation process
with our StructureGraph representation, we introduce Stru-
cADT: Generating Structure-controlled 3D point clouds
with Adjacency Diffusion Transformer. StrucADT explicitly
uses the StructureGraph of 3D shapes as user-specific input
to control the 3D point cloud generation. To enable the
network to incorporate the feature information from the
StructureGraph, we design a StructureGraphNet encoder to
fuse the structural information between parts. The learned
features of the StructureGraph and the part adjacency are
then incorporated into our proposed cCNF Prior module and
Diffusion Transformer [41], [42] module to generate structure-
consistent point cloud shapes.

Our contributions are as follows:

• We introduce StrucADT: Generating Structure-
controlled 3D point clouds with Adjacency Diffusion
Transformer, which can produce novel and realistic
point cloud shapes controlled by user-specific shape
structures. To the best of our knowledge, we are the

first to control the 3D point cloud generation with
shape structures.

• To better control the generation of 3D point clouds
using the structure of 3D point cloud shapes, we
annotate the adjacency relationships between seg-
mented parts on the ShapeNet dataset, forming
StructureGraph representation for 3D shapes.

• We propose StructureGraphNet module to extract
structure-aware latent features, cCNF Prior module
to learn the distribution of the latent features con-
trolled by the part adjacency, and Diffusion Trans-
former module conditioned on the latent features
and part adjacency to generate structure-controllable
point cloud shapes. Extensive experimental results
on the ShapeNet dataset showcase that our method
achieves state-of-the-art performance in controllable
point cloud generation.

The rest of the paper is structured as follows. Section 2
provides a review of the related work. Section 3 presents
a detailed explanation of our proposed method. In Sec-
tion 4, we evaluate the performance of our algorithm on
the ShapeNet dataset. Section 5 discusses the limitations of
our approach and suggests future research directions. Lastly,
Section 6 concludes the paper.

2 RELATED WORK

2.1 3D Point Cloud Generation

Achlioptas et al. [43] propose a deep autoencoder network
with good reconstruction quality and generalization ability.
The network includes an r-GAN running on the origi-
nal point cloud, an l-GAN with significant improvements
trained in the fixed latent space of the autoencoder, and
the Gaussian Mixture Models (GMMs). Valsesia et al. [44]
improve the r-GAN using a generative adversarial network
architecture based on graph convolutional networks. This
method can dynamically construct a proximity graph dur-
ing the generation process, enabling the extraction and rep-
resentation of local features. TreeGAN [45] enhances feature
representation capabilities by performing graph convolu-
tions in a tree, utilizing ancestor information to generate
multi-category 3D point clouds in an unsupervised manner.

Most of the above-mentioned 3D point cloud generation
models can only generate a fixed number of point clouds.
To address this issue, PointFlow [9] views the 3D point
cloud generation process as sampling a shape from a shape
distribution and then sampling a point cloud from the
distribution of that shape. The method uses two CNF [27]
generation models to model the above process, enabling
the generation of point clouds with an arbitrary number
of points. Based on PointFlow, DPM [10] proposes a 3D
point cloud generation method built up on diffusion models
that model the reverse diffusion process of point clouds as
a Markov chain conditioned on shape latent variables.

However, most of these approaches struggle to generate
controllable 3D point cloud shapes. To address the challenge
of lacking control in 3D point cloud shape generation,
we introduce StructureGraph representation and propose
a novel part adjacency conditioned Diffusion Transformer
module to control the process of 3D point cloud generation.
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2.2 Structure-Aware 3D Shape Generation

The structure of a shape generally refers to the components
that constitute a shape and the connections between these
components, which is a high-level abstraction of 3D shapes.
In order to enable users to modify or manipulate the syn-
thesized 3D shapes easily, the generative models should be
structure-aware, and users should be able to manipulate the
generated 3D shapes by modifying the high-level structure
of the shapes [36].

Many works represent the structure of shapes as trees
or graphs. GRASS [19] proposes a new neural network
architecture for encoding and synthesizing 3D shapes, par-
ticularly their structures. The method employs a recursive
neural networks (RvNNs) based autoencoder to map flat,
unlabeled, arbitrary parts to compact codes. The code ef-
fectively captures the hierarchy of man-made 3D objects
with varying structural complexity. Ren et al. [46] introduce
a method for creating consistent visualizations of collec-
tions of segmented meshes by embedding graphs jointly,
using spectral graph drawing for initialization and stress
majorization for refinement, enabling distance preservation
and alignment even with partial or soft node correspon-
dences. StructureNet [20] is a hierarchical graph network
designed to encode and generate diverse, realistic 3D shapes
by representing them as n-ary graphs, effectively handling
continuous deformations and structural alterations. SDM-
Net [21] proposes a deep generative neural network for
producing structured deformable meshes. The architecture
of SDM-Net is a two-level variational autoencoder, ensuring
consistency between the overall shape structure and surface
details. DSG-Net [23] employs a deep neural network that
enhances 3D shape generation by learning a disentangled
structured and geometric mesh representation, allowing for
sophisticated control over shape synthesis with separate yet
synergistic encoding of geometry and structure.

Recent works also focus on 3D shape generation and
manipulation using implicit representations, emphasizing
part-level approaches to enable precise and flexible edit-
ing of shapes. SPAGHETTI [47] develops a novel genera-
tive framework designed for editing and manipulating 3D
shapes represented as neural implicit fields. The architec-
ture disentangles shape representations into intrinsic and
extrinsic components, facilitating precise part-level control.
SALAD [48] proposes a novel 3D generative model de-
signed for high-quality 3D shape generation and manipu-
lation. It employs a cascaded diffusion framework based
on part-level implicit representations, enabling both realistic
shape generation and intuitive part-level editing without
additional training. 3DShape2VecSet [49] introduces a novel
neural field-based representation for 3D shape generation,
optimized for generative diffusion models. It encodes 3D
shapes into a compact latent space using a set of latent
vectors and processes them with cross-attention and self-
attention mechanisms.

Although most of these structure-aware methods can
generate 3D shapes with plausible structures that are easy
to manipulate and modify, their generation process can not
be controlled by user-specific input. In contrast, our method
can generate realistic and diverse point clouds controlled by
the input shape structures.

2.3 Controllable 3D Shape Generation

Many recent works control the generation of 3D shapes by
introducing additional conditions such as text and images.

PSGN [50] addresses the issue of non-uniqueness of the
true 3D point cloud corresponding to a single image by
proposing a novel conditional shape sampler. This sampler
is capable of predicting multiple plausible 3D point clouds
from an input image. Point-E [11] proposes two diffusion
models to generate point clouds from complex prompts. It
first leverages a pretrained text-to-image diffusion model to
generate a single synthetic view from the input text and then
utilizes a point cloud diffusion conditioned on the synthetic
image to produce 3D point clouds. Spice-E [51] introduces
a shape editing method to edit shapes semantically and
transform primitive-based abstractions into highly expres-
sive shapes. It adds structural guidance to 3D diffusion
models, extending its usage beyond text-conditional gen-
eration. This approach supports a variety of applications,
including 3D stylization, semantic shape editing, and text-
conditional abstraction-to-3D. CLAY [52] employs a large-
scale generative model designed for creating high-quality
3D assets with controllable features. It supports diverse
input modalities, including text, images, point clouds, and
voxels, enabling users to create intricate 3D models with
minimal expertise. Cheng et al. [53] propose a generative
model based on transformer architecture that creates spa-
tially coherent and user-controllable 2D land-use layouts
for virtual worlds by learning from real-world geographic
data while incorporating geometric and planning objectives
to enhance layout quality and adherence to user controls.
DepthGAN [54] is a novel GAN-based method designed
for generating accurate and geometrically consistent depth
maps from 2D semantic layouts using semantically aware
transformer blocks and a semantically weighted depth syn-
thesis module, enabling controllable and effective 3D scene
generation for applications like AR and VR.

DiffFacto [12] is proposed for controllable part-based
3D point cloud generation. It achieves part-level control
over shapes by learning the distribution of shapes through
a probabilistic generative model. The core innovation of
DiffFacto lies in its ability to generate novel shapes by un-
derstanding and manipulating the factorized representation
of shapes (i.e., decomposing shapes into independent parts
and their configurations). This process is realized through
a cross-diffusion network that simulates the complex in-
teractions between different parts of shapes, enabling the
generation of coherent and plausible 3D structures under
various configurations.

Unlike DiffFacto, which controls the 3D point cloud
generation through semantic segmentation labels and part
transformations, we introduce StructureGraph representa-
tion that consists of part existences and part adjacency
relationships, explicitly using the shape structures as user
control. To enable the network to incorporate the feature
information from the StructureGraph, we design the Struc-
tureGraphNet module to fuse the structural information
between parts. The learned features of the StructureGraph
and the part adjacency are then incorporated into the cCNF
Prior module and Diffusion Transformer module to control
the generation of corresponding point cloud shapes.
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Fig. 2. Our structure-controlled 3D point cloud generation framework comprises three components: i) The StructureGraphNet Module: This module
encodes part features and part adjacency of the StructureGraph into global latent code Z. ii) The Structure-controlled Prior Module: This module
utilizes cCNF models to learn the representation of the global latent code Z conditioned on the part adjacency of the StructureGraph. iii) The
Diffusion Transformer Module: This module adds noise to 3D point cloud shapes and trains a denoising Transformer controlled by the concatenation
of the global label code Z and the part adjacency of the StructureGraph. In particular, the part features are the segmentation labels S combined
with the point cloud shape X, which is only included in StructureGraph when training. The part adjacency in the figure consists of adjacency
relationships E and part existences V for brevity.

3 OUR METHOD

This section begins with an overview of the algorithm’s
pipeline, followed by individual introductions to each mod-
ule within the framework. Finally, the complete training and
sampling process is presented.

3.1 Overview
Each input point cloud shape X = {xi}ni=1 consists of n
points, where each point xi ∈ R3 represents the three-
dimensional coordinates of the point. Each point cloud
shape X of the same category is segmented into m parts,
forming its semantic segmentation one-hot labels S =
{{si,j}mj=1}ni=1, where si,j represents whether point xi is
assigned to the j-th part. Based on the segmentation labels
S, we introduce the StructureGraph representation, which
consists of part existences V = {vj}mj=1 to denote whether
part j exists in shape X, and adjacency relationships
E = {{ej,k}mk=1}mj=1 to represent whether part j is adjacent
to part k, forming the StructureGraph SG = {S,V,E}.
During training, the segmentation labels S in SG is also
combined with the point cloud X as part features.

As shown in Figure 2, the overall pipeline of our method
is divided into the following three modules: i) Structure-
GraphNet Qϕ: To extract structure-aware point cloud fea-
tures Z. ii) Structure-controlled cCNF Prior Module Pψ : To
learn the distribution of the extracted point cloud features Z
conditioned on the part adjacency. iii) Structure-controlled
Diffusion Transformer Module Fθ : Uses the structure-aware
point cloud features Z extracted in i) and part adjacency as

conditional context to control the generation of point cloud
shapes.

Note that in Figure 2, the part features are the segmenta-
tion labels S combined with the point cloud shape X, which
is only included in StructureGraph when training. The part
adjacency in the figure consists of adjacency relationships E
and part existences V for brevity.

3.2 StructureGraphNet Module

We propose a novel StructureGraphNet (SGN) module to
aggregate features of point cloud X and StructureGraph
SG, thereby extracting structure-aware latent features Z.
This enables subsequent generative models to generate
point clouds based on the latent features and the corre-
sponding structures.

The input of the StructureGraphNet is part features
and part adjacency. As mentioned above, part features
are the combination of the point cloud shape X and the
segmentation labels S. For each point cloud shape X, the
StructureGraphNet Qϕ(Z|X,S,V,E) extracts the structure-
aware latent features Z = {zj}mj=1:

Z = Fgat

(
Fconv (X)

T · S,V,E
)
, (1)

where Fconv represents a 1D convolutional network to
extract the overall feature vector Zg of X. The semantic
segmentation labels S of X are multiplied by the transposed
overall point cloud features Zg

T to extract the local features
Zl of each segmented part. Each segmented part j is treated
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Fig. 3. Sampling process of our method. For each semantic part, the sampled noise ŵj is converted to ẑj through reversed cCNF, and all are
combined to latent code Ẑ. The user-specific StructureGraph ŜG contains part adjacency consisting of part existences and adjacency relationships,
which are then concatenated with latent code to control the diffusion Transformer Fθ gradually sampling novel and controllable point cloud X̂.

as a node in the graph, with the extracted local features
Zl as the node features. The part existences V are utilized
as the part mask to ignore the node that does not exist
in the graph. The adjacency relationships E between parts
are considered as edges of the graph. A graph attention
network (GAT) [55] Fgat is applied on this StructureGraph
SG, allowing the network to dynamically adjust the weights
between individual parts and other adjacent parts, which
enables increased attention to certain part relationships,
such as between the armrests and seat in a chair. The final
feature vector Z is obtained by applying the Fgat network on
the StructureGraph SG, which incorporates the structural
information of the shape parts.

Additionally, to efficiently optimize the Evidence Lower
Bound (ELBO), we use reparameterization to sample from
the distribution of Qϕ(Z|X,S,V,E):

Z = µϕ (X,S,V,E) + σϕ (X,S,V,E) ∗ ϵ, (2)

where ϵ ∼ N (0, I), µϕ and σϕ represent the mean and
standard deviation of the distribution Qϕ(Z|X,S,V,E),
respectively.

3.3 Structure-controlled Prior Module
In the Structure-controlled Prior Module, we employ a con-
ditional Continuous Normalizing Flow (cCNF) [26], [27] net-
work to learn the latent features Z conditioned on the part
existences V and adjacency relationships E. Normalizing
flows are a series of reversible mappings that can transform
an initial known distribution into a more complex one [9].

For each point cloud shape X, the StructureGraphNet
Qϕ(Z|X,S,V,E) above extracts structure-aware feature
vectors Z = {zj}mj=1. The structure-controlled cCNF Prior
model Pψ (Z,V,E) = {P (j)

ψ (zj , vj , ej.)}mj=1 applies a nor-
malizing flow conditioned on the part adjacency to regu-
larize each part feature vector zj , yielding a transformed
distribution W = {wj}mj=1:

wj = P
(j)
ψ (zj , vj , ej.) , (3)

where ej. represents all the edges adjacent to the part j.
In the sampling process, as shown in Figure 3, by invert-

ing this normalizing flow denoted as P−1
ψ and sampling ŵj

from a standard Gaussian distribution N (0, I), the distribu-
tion of zj can be inversely reconstructed conditioned on the
user-specific part adjacency v̂j and êj.:

ẑj = [P
(j)
ψ ]−1 (ŵj , v̂j , êj.) (4)

where ẑj represents the reconstructed distribution of zj and
ŵj ∼ N (0, I) .

Consequently, the loss function for the cCNF Prior can
be derived as follows:

Lprior =
m∑
j=1

DKL

(
Qϕ (zj |X,S, vj , ej.) ||P (j)

ψ (zj , vj , ej.)
)

= −
m∑
j=1

[
EQϕ(zj |X,S,vj ,ej.)[logP

(j)
ψ (zj , vj , ej.)]

+H [Qϕ (zj |X,S, vj , ej.)]
]
, (5)

where DKL represents the KL divergence between two
distributions and H is the entropy.

3.4 Structure-controlled Diffusion Transformer Module
In the Structure-controlled Diffusion Transformer Mod-
ule, we leverage the Denoising Diffusion Probabilistic
Model (DDPM) [30] to learn the conditional likelihood
P (X|Z,S,V,E) through an iterative denoising process.

In the forward diffusion process f , for a point cloud
shape X, Gaussian noise ε with T time steps is added, such
that the distribution of the point cloud gradually becomes
an independent Gaussian distribution f(X(t)|X(0)):

X(t) =
√
ᾱtX

(0) +
√
1− ᾱt ∗ ε

f(X(t)|X(0)) = N (X(t)|
√
ᾱtX

(0), (1− ᾱt) I), (6)

where ε ∼ N (0, I), t = 1, . . . , T , αt = 1 − βt, βt represents
the variance schedule that increases with t, ᾱt =

∏t
i=1 αi.
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ALGORITHM 1: Training process of our method
Input:

Point cloud dataset X with semantic segmentation
labels S, part existences V and part adjacency
relationships E.
Output:

Trained network parameters ϕ of the SGN Q, ψ of
the Prior model P , and θ of the diffusion model F .
Training process:
Step 1: Training StructureGraphNet;
for j ← 1 to m do

Qϕ (zj |X,S, vj , ej.)← X,S, vj , ej.;
Sample ϵj ∼ N (0, I);
zj ← µϕ(X,S, vj , ej.) + σϕ(X,S, vj , ej.) ∗ ϵj

end
Step 2: Training Prior model;
for j ← 1 to m do

P
(j)
ψ (zj , vj , ej.)← zj , vj , ej.;
Lprior ←
DKL

(
Qϕ (zj |X,S, vj , ej.) ||P (j)

ψ (zj , vj , ej.)
)

.

end
Step 3: Training diffusion model.
for i← 1 to n do

Sample t ∼ Uniform{1, . . . , T};
Sample ε ∼ N (0, I);
x
(0)
i ← xi;
x
(t)
i ←

√
ᾱtx

(0)
i +

√
1− ᾱt ∗ ε (Eq. (6));

Ldiff ← Eε,t,Z,S,V,E
[∥∥∥ε− Fθ(x

(t)
i ,Z,S,V,E)

∥∥∥2

2

]
.

end

During the reverse diffusion process, the neural network
Fθ is trained to model the probability distribution, using
the forward process f(X(t−1)|X(t),X(0)) as an approxi-
mate posterior to approximately maximize the likelihood
Ef(X(0))logFθ(X

(0)). Based on the ELBO formula, the sim-
plified DDPM loss function can be derived as the distance
between the noise predicted by the network Fθ in the re-
verse diffusion and the ground truth noise ε in the forward
diffusion process f :

Ldiff =
1

n

n∑
i=1

Eε,t,Z,S,V,E
[∥∥∥ε− Fθ(x(t)i ,Z,S,V,E)

∥∥∥2
2

]
,

(7)
where t ∼ Uniform{1, . . . , T}, ε ∼ N (0, I), and Z ∼
Qϕ (Z|X,S,V,E). The predicted noise Fθ(x

(t)
i ,Z,S,V,E)

is conditioned on the part features Z, segmentation semantic
labels S, part existences V, part adjacency relationships E,
and time step t. Therefore, the denoising process can be
controlled through shape structure when sampling.

As shown in Figure 2, Fθ is a Transformer [41], [42]
that has L cross-attention layers and a feedforward net-
work (FFN). In each cross-attention layer:

ALGORITHM 2: Sampling process of our method
Input:

User-specific StructureGraph ŜG, which consists
of segmentation labels Ŝ (can be default), part
existences V̂ and part adjacency relationships Ê.
Output:

Generated novel point cloud shapes X̂ with
arbitrary n̂ points.
Sampling process:
Step 1: Sampling from the Prior model;
for j ← 1 to m do

Sample noise ŵj ∼ N (0, I);
ẑj ← [P

(j)
ψ ]−1 (ŵj , v̂j , êj.) (Eq. (4)).

end
Step 2: Sampling from the diffusion model;
Sample X̂(T ) ∼ N (0, I);
for t← T to 1 do

Sample noise ϵt ∼ N (0, I);
for i← 1 to n̂ do

µ0 ← 1√
αt
x̂
(t)
i ;

µ1 ← 1−αt√
αt

√
1−ᾱt

Fθ(x̂
(t)
i , Ẑ, Ŝ, V̂, Ê);

σ ←
√

1−ᾱt−1

1−ᾱt
βt;

x̂
(t−1)
i = µ0 − µ1 + σ ∗ ϵt (Eq. (9)).

end
end
X̂← X̂(0).

CrossAttention(Qca, Kca, Vca) = Softmax(
QcaK

T
ca√

d
) · Vca

Qca =W
(l)
Qca
· Concat(X,S)

Kca =W
(l)
Kca
· Concat(Z,V,E,Emb(t))

Vca =W
(l)
Vca
· Concat(Z,V,E,Emb(t)), (8)

where l = 1, . . . , L. W (l)
Qca

, W (l)
Kca

and W
(l)
Vca

are learn-
able projection matrices for the l-th cross-attention layer.
Concat(·) is the concatenation operation, and Emb(t) rep-
resents the time embedding for the time step t.

In the sampling process, as illustrated in Figure 3, given
Gaussian noise as noised point cloud shape X̂(T ) ∼ N (0, I)
with arbitrary n̂ points, part features Ẑ, semantic segmen-
tation labels Ŝ, part existences V̂, and part adjacency rela-
tionships Ê, reverse diffusion is performed from time step
T to 1. Trained diffusion Transformer Fθ predicts the noise
and gradually denoises X̂(t) to finally generate novel point
cloud shapes X̂(0) with controllable structure. The sampling
process is as follows:

X̂(t−1) =
1
√
αt

(
X̂(t) − 1− αt√

1− ᾱt
Fθ(X̂

(t), Ẑ, Ŝ, V̂, Ê)

)

+

√
1− ᾱt−1

1− ᾱt
βt ∗ ϵt, (9)

where time step t = T, . . . , 1 and ϵt is sampled noise at
time step t. Note that if the semantic segmentation labels
Ŝ are not given, the default semantic segmentation labels
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Fig. 4. 3D point cloud shapes (left column) of the ShapeNet dataset on four categories: Chair, Airplane, Lamp, and Car, with our annotated
StructureGraph and their names (right column). Note that each segmented part in the StructureGraph represents only one graph node, and multiple
nodes in the figure are for visualization purposes.

can be equally distributed to each point so that each existed
segmentation part has the same number of points.

3.5 Training and Sampling Process
The overall training loss function L for our proposed
method is the sum of the loss Lprior with loss weight
λ for the Prior model Pψ (Z,V,E) to learn the distri-
bution of features Z extracted by the StructureGraphNet
Qϕ(Z|X,S,V,E) and the loss Ldiff for the diffusion model
Fθ to predict the noise:

L = λLprior + Ldiff

= −λ
m∑
j=1

[
EQϕ(zj |X,S,vj ,ej.)[logP

(j)
ψ (zj , vj , ej.)]

+H [Qϕ (zj |X,S, vj , ej.)]
]

+
1

n

n∑
i=1

Eε,t,Z,S,V,E
[∥∥∥ε− Fθ(x(t)i ,Z,S,V,E)

∥∥∥2
2

]
. (10)

To clarify our method, Algorithm 1 presents the training
process of our approach and Algorithm 2 presents sampling
process.

4 EXPERIMENTS

This section first provides a detailed overview of our exper-
iments’ datasets and evaluation metrics. Then, we present
the qualitative and quantitative results of our method on
the widely used ShapeNet dataset and StructureNet dataset.

Moreover, we compare our method with the results of
existing state-of-the-art 3D point cloud generation methods.
We also perform some ablation studies to verify the effec-
tiveness of each module in our method. We also show the
results of reconstructing surfaces from the generated point
clouds. Finally, the implementation details and performance
are presented.

4.1 Experimental Datasets
4.1.1 ShapeNet Dataset
Following prior works [9], [10], [12], the datasets used in this
paper are four categories of the ShapeNet dataset [40]: Chair,
Airplane, Lamp, and Car, with part segmentation labels [56].
Each category contains 3053, 2349, 1261, 740 training shapes
and 704, 341, 286, 158 test shapes, respectively. On each
ShapeNet category, we train our model separately and gen-
erate novel point cloud shapes.

Since the dataset only provides segmentation labels for
each shape category, instead of simply computing the min-
imum distance between two segmented parts to obtain
the part adjacency, we manually annotate the adjacency
relationships between the segmented parts of the 3D point
cloud shapes to construct the StructureGraph. As shown
in Figure 4, for each category, the left column is the 3D
point cloud shapes with segmentation labels, and the right
column is the StructureGraph we annotated along with their
names. For example, Ch13 indicates that the 1-th part (seat)
and the 3-th part (armrest) of this chair are adjacent (we
assume that the chair’s seat is adjacent to the backrest
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Fig. 5. Computing process of our proposed Structure Consistency Accuracy between input part adjacency and predicted part adjacency. FCN in
the AdjacencyPredictor represents the fully connected neural networks.

and leg for brevity). Note that each segmented part in
the StructureGraph represents only one graph node, and
multiple nodes in the figure are for visualization purposes.
We randomly sample 2048 points from each of the point
cloud shape and normalize each of them to zero mean and
unit variance.

Moreover, we calculate the Cyclomatic Complexity [57]
to analyze the complexity of the shape’s structure. There
are 171 chairs that have reached the maximum complexity
of a 4-node complete graph: 10. We also counted that there
were a total of 2087 chairs with a complexity of 5 or more.
This indicates that the structure of most chairs in the 4-node
graph has reached a relatively complex level.

4.1.2 StructureNet Dataset
StructureNet [20] represents shapes as n-ary part hierarchies
with adjacency between sibling parts, they compute the
minimum distance between two segmented parts to obtain
the part adjacency on the PartNet [22] dataset. The shape
structure in the StructureNet dataset is relatively complex.

To adapt the structure of StructureNet dataset to apply
in our method, we only use the first level of the root node
of the StructureNet data. We trained our method separately
on four categories of the StructureNet dataset: Chair, Vase,
TrashCan, and Bed. We randomly split the dataset into 85%
training set and 15% testing set.

4.2 Evaluation Metrics
We employ two types of metrics to evaluate our proposed
structure-controlled 3D point cloud generation method:
Shape Generation Metrics and Structure Consistency Accu-
racy. The Shape Generation Metrics are used to assess the
realism and diversity of the generated point cloud shapes
while the Structure Consistency Accuracy is utilized to
evaluate the consistency between the generated point cloud
shapes and the input shape structure.

Shape Generation Metrics. Following prior works, we use
the Chamfer Distance (CD) [43] and the Earth Mover’s
Distance (EMD) [43] to evaluate the reconstruction quality
of the generated point cloud shape. To evaluate the gen-
eration quality, we employ the coverage score (COV) [43],
the minimum matching distance (MMD) [43], the Jenson-
Shannon divergence (JSD) [43], and 1-NN classifier accuracy
(1-NNA) [9]. MMD is a metric for evaluating the quality of
generated point clouds. For each point cloud in the reference
set, the distance to its nearest neighbor in the generated set
is computed and averaged. COV measures the proportion

of point clouds in the reference set that match at least one
point cloud in the generated set. For each point cloud in
the generated set, its nearest neighbor in the reference set is
marked as matched. 1-NNA is used for two-sample tests to
assess whether two distributions are identical. JSD is used to
calculate the distance between marginal point distributions.

Structure Consistency Accuracy. The core of the structure-
controllable generation network proposed in this paper lies
in generating point cloud shapes that conform to the input
structure. Therefore, in addition to measuring the quality of
the generated point cloud shapes, it is also necessary to mea-
sure the consistency between the user-input StructureGraph
ŜG = {Ŝ, V̂, Ê} and the generated point cloud shapes X̂.
We propose the Structure Consistency Accuracy (SCA) to
evaluate this consistency with the following formula:

SCA(X̂, V̂, Ê) =

∑
v̂j∈V̂

∑
êj,k∈Ê[qv ∗ qe]
m2

qv = I
[
v̂j , [Nv(X̂)]j

]
qe = I

[
êj,k, [Ne(X̂)]j,k

]
, (11)

where j = 1, . . . ,m, k = 1, . . . ,m, and N(·) represents the
neural networks that predict the StructureGraph of the gen-
erated point cloud X̂. Therefore, [Nv(·)]j predicts whether
the j-th part exists while [Ne(·)]j,k predicts whether the j-th
part is adjacent to the k-th part. As illustrated in Figure 5,
the neural networks N(·) contain frozen StructureGraph-
Net and AdjacencyPredictor, which are also trained using
the point cloud shapes with their corresponding Structure-
Graph on each category of the ShapeNet dataset. Similarly,
v̂j is whether the j-th part exists and êj,k is whether the j-th
part is adjacent to the k-th part in the input StructureGraph.
I[a, b] is an indicator function that equals 1 if a = b and
0 otherwise. This metric measures the consistency between
the input StructureGraph and the predicted StructureGraph
of the generated shape.

4.3 Experimental Results and Comparisons

In our work, we evaluate the effectiveness of our proposed
method by comparing it with various controllable 3D point
cloud generation methods and pre-trained 3D shape gener-
ation methods on the ShapeNet dataset. We also evaluate
the performance of our method on four categories of the
StructureNet dataset.
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TABLE 1
Comparing our method with 3D shape generation methods on four categories of the ShapeNet dataset in Shape Generation Metrics. MMD scores

and JSD scores are multiplied by 102. COV scores and 1-NNA scores are reported in %.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Shape Model CD EMD CD EMD CD EMD -

Chair

PointFlow [9] 9.00 35.37 22.67 25.87 93.20 96.67 5.02
DPM [10] 8.89 39.77 29.60 19.20 88.13 95.87 4.39
DiffFacto [12] 6.28 32.83 45.37 39.13 75.48 88.54 2.75
SPAGHETTI [47] 10.64 30.37 43.37 32.67 87.74 93.02 3.91
SALAD [48] 10.60 30.21 45.07 36.24 85.16 90.08 3.72
StrucADT (Ours) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

Airplane

PointFlow [9] 3.42 23.76 35.21 34.44 87.04 90.74 2.27
DPM [10] 2.94 25.28 37.41 22.59 77.59 95.00 1.73
DiffFacto [12] 2.81 22.08 40.20 35.34 76.23 89.07 1.62
SPAGHETTI [47] 5.24 25.29 45.56 35.93 89.13 90.78 6.52
SALAD [48] 4.12 21.29 47.04 33.34 84.97 90.12 6.27
StrucADT (Ours) 2.69 23.00 42.59 37.04 74.81 94.07 1.60

Lamp

PointFlow [9] 10.82 42.09 43.87 41.29 82.26 88.06 6.74
DPM [10] 11.32 40.41 43.23 38.06 80.32 93.23 4.87
DiffFacto [12] 9.33 32.74 47.88 48.62 71.40 79.21 3.44
StrucADT (Ours) 8.11 31.49 49.03 45.81 61.29 68.06 2.41

Car

PointFlow [9] 3.80 21.78 52.75 39.56 71.98 76.92 1.88
DPM [10] 3.54 23.37 51.65 23.08 60.44 90.66 1.86
DiffFacto [12] 3.12 22.74 55.09 43.11 62.17 80.10 1.90
StrucADT (Ours) 3.34 21.93 57.14 43.96 58.24 79.67 1.84

TABLE 2
Evaluating the Structure Consistency Accuracy of our method on the Chair category. SCA scores are reported in %.

Shape Model SCA-Ch012 SCA-Ch03 SCA-Ch13 SCA-Ch23 SCA-Ch013 SCA-Ch023 SCA-Ch123 SCA-Ch0123

Chair

PointFlow [9] 90.17 82.78 80.23 81.12 72.58 73.98 72.45 63.90
DPM [10] 93.88 82.00 81.75 83.12 73.75 73.37 73.00 63.37
DiffFacto [12] 95.42 85.62 82.45 85.10 80.98 81.12 76.40 74.23
StrucADT (Ours) 97.96 91.20 85.20 82.65 87.24 83.55 77.68 77.30

TABLE 3
Evaluating the Structure Consistency Accuracy of our method on the Airplane category. SCA scores are reported in %.

Shape Model SCA-Ai012 SCA-Ai03 SCA-Ai13 SCA-Ai23 SCA-Ai013 SCA-Ai023 SCA-Ai123 SCA-Ai0123

Airplane

PointFlow [9] 85.46 78.70 77.42 75.26 71.17 69.13 69.39 61.35
DPM [10] 83.16 77.81 77.81 77.68 69.39 70.41 69.13 63.01
DiffFacto [12] 81.22 82.16 80.73 79.18 83.90 75.02 71.74 73.95
StrucADT (Ours) 83.04 86.22 94.26 70.92 93.75 76.79 80.36 84.06

TABLE 4
Evaluating the Structure Consistency Accuracy of our method on the Lamp category. SCA scores are reported in %.

Shape Model SCA-La012 SCA-La03 SCA-La13 SCA-La23 SCA-La013 SCA-La023 SCA-La123 SCA-La0123

Lamp

PointFlow [9] 77.81 71.30 72.96 71.94 66.96 69.13 68.24 60.71
DPM [10] 79.08 72.83 74.11 72.19 67.09 68.75 66.71 63.01
DiffFacto [12] 78.94 74.09 80.17 76.92 70.60 71.12 72.58 75.50
StrucADT (Ours) 81.51 77.81 78.44 78.95 78.95 77.30 76.91 79.85

TABLE 5
Evaluating the Structure Consistency Accuracy of our method on the Car category. SCA scores are reported in %.

Shape Model SCA-Ca03 SCA-Ca13 SCA-Ca23 SCA-Ca013 SCA-Ca023 SCA-Ca123 SCA-Ca0123

Car

PointFlow [9] 65.43 65.82 65.18 62.37 65.94 64.27 61.35
DPM [10] 65.31 68.37 67.60 64.54 63.78 67.60 63.39
DiffFacto [12] 70.92 76.19 71.37 75.52 77.61 74.09 81.62
StrucADT (Ours) 76.02 74.62 76.53 86.09 88.65 86.85 98.98
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Fig. 6. Generated 3D point cloud shapes (right column) controlled by the user-specific StructureGraph (left column) on four categories of the
ShapeNet dataset: Chair, Airplane, Lamp, and Car.

Fig. 7. Comparison results of generated 3D point cloud shapes between our method (StrucADT) with pre-trained 3D shape generation methods:
SPAGHETTI and SALAD on the Chair and Airplane categories of the ShapeNet dataset.

4.3.1 ShapeNet Dataset

Following DiffFacto [12], to ensure a fair comparison, we
adapt PointFlow [9], DPM [10], and DiffFacto [12] to be con-
trolled by our proposed StructureGraph representation so
that we can compare with these methods in Shape Genera-
tion Metrics and Structure Consistency Accuracy to evaluate
both the generation quality and structure controllability.

Comparison in Shape Generation Metrics. When comparing
in Shape Generation Metrics, we evaluate all the methods on
the test shapes of the ShapeNet dataset with our annotated
StructureGraph, as illustrated in Figure 4. As shown in
Table 1, we compare our method with structure-adapted
PointFlow, DPM, and DiffFacto in Shape Generation Metrics
on the four categories of the ShapeNet dataset. MMD and
JSD scores are multiplied by 102. COV scores and 1-NNA

scores are reported in %. Based on the data in Table 1,
our proposed StrucADT attained higher scores in Shape
Generation Metrics compared to other methods on each
category of the ShapeNet dataset, proving that our method
can produce high-quality and varying point clouds con-
trolled by the structure of test shapes. In some metrics of
each category, our method is slightly lower than PointFlow
and DiffFacto, but our method is generally better than the
other three methods on each category. Our experimental
results demonstrate that our structure-controlled 3D point
cloud generation method outperforms other methods in
generating novel and diverse 3D point cloud shapes.

We also compare our method with pre-trained 3D shape
generation methods: SPAGHETTI [47] and SALAD [48].
We used the pre-trained models of the SPAGHETTI and
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Fig. 8. Comparison results of generated 3D point cloud shapes controlled by the user-specific StructureGraph on the Chair category of the ShapeNet
dataset. The enlarged part of the figure shows the changes in the part adjacency relationships corresponding to different input structures of the
chair. Our method can generate shapes consistent with the input structures, while other methods fail.

SALAD, and sampled 3D shapes to evaluate the Shape
Generation Metrics on the Chair and Airplane categories.
As shown in Table 1 and Figure 7, our method outperforms
SPAGHETTI and is comparable to SALAD in generating
high-quality and diverse point clouds.

Comparison in Structure Consistency Accuracy. When com-
paring in Structure Consistency Accuracy, the input Struc-
tureGraph consists of the user-specific part existences, part
adjacency relationships, and the default semantic segmen-
tation labels that give each existing segmentation part the
same number of points. We generate 50 shapes for one input
StructureGraph on each category of the ShapeNet dataset to
compute the averaged Structure Consistency Accuracy. Al-
though our method can generate point clouds with arbitrary
points, the generated shapes still contain 2048 points, the
same as the input shapes. Figure 6 displays the generation
results of our proposed StrucADT controlled by the user-
specific input StructureGraph on the four categories of the
ShapeNet dataset. For each category, the left column is the
input structures to control point cloud generation, while the
right column is the four generated shapes controlled by each
input structure. All our generated point cloud shapes are
consistent with the input structures on the four categories.

As shown in Table 2 to Table 5, we compare our method

with structure-adapted PointFlow, DPM, and DiffFacto in
Structure Consistency Accuracy on each category of the
ShapeNet dataset. SCA scores are reported in %. We experi-
ment with all the structures occurring on the four categories
of the ShapeNet dataset, where the structures with the high-
est occurrences are listed in the table. For example, SCA-
Ch03 represents the Structure Consistency Accuracy of the
generated chair with the 3-th part (armrests) only adjacent to
the 0-th part (back), and SCA-Ch012 represents the Structure
Consistency Accuracy of the generated chair with no 3-
th part (armrests). Note that Ca012 does not exist in the
Car category because all cars have the 3-th part (body).
Based on the data in Table 2 to Table 5, our proposed
StrucADT achieves higher scores in Structure Consistency
Accuracy compared to other methods on each category of
the ShapeNet dataset. In addition, we find that the Structure
Consistency Accuracy decreases as the part adjacency of
the input structure increases (e.g., from Ch012 to Ch0123)
on the Chair category, indicating that more complex struc-
tures are more challenging to control the generation of the
corresponding 3D point cloud shapes. It is necessary to
balance the quality of point cloud generation and structural
consistency. Therefore, our method may not achieve the best
quality performance of the point clouds generated in some
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Fig. 9. Generated 3D point cloud shapes (right column) controlled by the user-specific StructureGraph (left column) on four categories of the
StructureNet dataset: Chair, Vase, TrashCan, and Bed.

TABLE 6
Evaluating the performance of our method on four categories of the StructureNet dataset in Shape Generation Metrics. MMD scores and JSD

scores are multiplied by 102. COV scores and 1-NNA scores are reported in %.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Shape CD EMD CD EMD CD EMD -

Chair 5.95 31.71 40.29 34.07 75.95 92.98 1.13
Vase 8.43 31.78 53.45 48.28 51.29 60.78 1.84
TrashCan 5.96 9.07 58.97 48.72 47.44 73.08 2.00
Bed 10.79 38.38 50.00 46.15 42.31 53.85 5.14

cases, but it can generate point clouds corresponding to the
structure input by the user.

Figure 8 shows a qualitative comparison of our method
with the other three methods on the chair category of the
ShapeNet dataset. The enlarged part of the figure shows the
changes in the part adjacency relationships corresponding
to different input structures of the chair. Our method can
generate shapes that are consistent with the input structures.
Especially when the input structures are Ch13 and Ch03,
our method can generate chairs whose armrests are only
attached to the seat and whose armrests are only attached
to the back, respectively, while other methods fail to gen-
erate these shapes. Our experimental results demonstrate
that our 3D point cloud generation method can generate
shapes controlled by the input structures, outperforming
other methods and achieving better structure controllability.

4.3.2 StructureNet Dataset

We also evaluate the performance of our method on four
categories of the StructureNet dataset in Shape Generation
Metrics, as shown in Table 6. Table 6 and Figure 9 indicate
that our method can generate high-quality point cloud

shapes consistent with the input structure on the relatively
complex StructureNet dataset.

It is worth noting that the StructureGraph encodes only
abstract part existences and adjacency relationships, without
spatial location or orientation. Hence, the diversity in part
layouts seen in the last column of Figure 9 arises solely
from the stochastic nature of the diffusion-based generation
process. This design allows our model to flexibly generate
multiple plausible spatial configurations that are consistent
with the same abstract structure.

Moreover, our method naturally supports disconnected
nodes in the input StructureGraph, i.e., parts without any
adjacent connections. These nodes are encoded individually
in the StructureGraphNet without receiving messages from
neighbors, and their spatial placement during generation
is determined stochastically. For example, in the last Vase
instance in Figure 9, the top part is structurally disconnected
from the body, and our model successfully generates it as
a separate, non-adjacent component, demonstrating correct
handling of isolated parts under structure control.
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Fig. 10. Network architecture of GraphCVAE in the ablation experiments of the Prior module. GCN in the Graph Encoder and Graph Decoder
represents the graph convolutional neural networks.

Fig. 11. Comparison results of ablation experiments on network framework of prior module controlled by the user-specific StructureGraph on chair
category. Compared to GraphCVAE, our method generates shapes consistent with the input structures and ensures the quality and diversity of the
generated shapes. In contrast, GraphCVAE can only generate similar and repetitive shapes with excessive control.

4.4 Ablation Study

In this section, we conduct ablation experiments on the
critical modules of our method and evaluate the structure
generalization of our method. The other modules remain
unchanged when one module is ablated in the experiments.

4.4.1 StructureGraphNet

To validate the contributions of our proposed Structure-
GraphNet (SGN) to the shape generation’s effectiveness,
we ablate our StructureGraphNet with the PointNet en-
coder [58], which only takes in each shape part without
part adjacency. Table 7 shows that our proposed Struc-
tureGraphNet outperforms the PointNet encoder in Shape
Generation Metrics, and Table 8 displays that our proposed
StructureGraphNet achieves higher Structure Consistency
Accuracy compared to the PointNet encoder, proving the ef-
fectiveness of the StructureGraphNet in extracting structure-
aware latent features.

4.4.2 cCNF Prior

We ablate our cCNF Prior with our proposed Structure-
Graph conditioned VAE (GraphCVAE) Prior, which encodes
the latent code Z and decodes it conditioned on the part
adjacency with reconstruction loss and latent regulariza-
tion loss. Figure 10 displays the network architecture of
GraphCVAE. As shown in Figure 11, GraphCVAE has more
controllability on point cloud generation conditioned on
the StructureGraph, but the generated shapes have low
diversity and quality. Table 7 illustrates that our cCNF Prior
outperforms the GraphCVAE Prior, achieving higher shape
generation scores. Table 8 shows that GraphCVAE Prior has
higher Structure Consistency Accuracy than cCNF Prior.
Compared to GraphCVAE, our method generates shapes
consistent with the input structures and ensures the quality
and diversity of the generated shapes. In contrast, GraphC-
VAE can only generate similar and repetitive shapes with
excessive control. Therefore, our proposed cCNF Prior is
superior to the GraphCVAE Prior.
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TABLE 7
Ablation experiments on the network frameworks of the StructureGraphNet module, Prior module, Diffusion Transformer module and our overall

framework using the Chair category in Shape Generation Metrics. SGN is the abbreviation of our proposed StructureGraphNet. DiT is the
abbreviation of our Diffusion Transformer module. MMD scores and JSD scores are multiplied by 102. COV scores and 1-NNA scores are reported

in %.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Shape Model CD EMD CD EMD CD EMD -

Chair PointNet [58] 6.23 32.38 48.00 36.00 71.73 96.13 2.08
SGN (Ours) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

Chair GraphCVAE 10.28 36.18 29.33 25.87 93.47 98.27 8.49
cCNF (Ours) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

Chair
SGN+PointFlow [9] 6.15 31.83 38.54 35.93 71.47 95.07 1.91
SGN+DPM [10] 6.51 34.53 39.73 21.07 80.53 96.13 2.39
SGN+DiT (Ours) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

Chair
Two Diffusion Models [42] 7.30 33.37 42.40 27.73 81.33 97.20 4.76
Single VAE [59] 9.34 43.75 32.53 20.99 85.74 95.56 4.71
StrucADT (Ours) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

TABLE 8
Ablation experiments on the network frameworks of the StructureGraphNet module, Prior module and Diffusion Transformer module using the
Chair category in Structure Consistency Accuracy. SGN is the abbreviation of our proposed StructureGraphNet. DiT is the abbreviation of our

Diffusion Transformer module. SCA scores are reported in %.

Shape Model SCA-Ch012 SCA-Ch03 SCA-Ch13 SCA-Ch23 SCA-Ch013 SCA-Ch023 SCA-Ch123 SCA-Ch0123

Chair PointNet [58] 97.83 91.33 84.21 83.80 86.27 83.41 76.95 75.81
SGN (Ours) 97.96 91.20 85.20 82.65 87.24 83.55 77.68 77.30

Chair GraphCVAE 97.83 92.09 93.24 84.69 92.47 85.46 72.96 79.72
cCNF (Ours) 97.96 91.20 85.20 82.65 87.24 83.55 77.68 77.30

Chair
SGN+PointFlow [9] 97.83 91.63 85.13 82.25 86.25 82.37 79.25 76.37
SGN+DPM [10] 96.94 88.14 85.01 79.72 85.46 79.46 78.32 76.53
SGN+DiT (Ours) 97.96 91.20 85.20 82.65 87.24 83.55 77.68 77.30

TABLE 9
Evaluating the structure generalization of our method on the Chair category of the ShapeNet dataset in Shape Generation Metrics under different
Structure Ratios. Structure Ratios refer to the percentage of training samples containing the target structure Ch013. MMD scores and JSD scores

are multiplied by 102. COV scores and 1-NNA scores are reported in %.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Shape Structure Ratios CD EMD CD EMD CD EMD -

Chair

0% 7.40 33.25 40.06 32.81 79.81 94.48 2.54
10% 7.39 34.16 41.96 33.22 79.20 94.23 2.91
20% 7.59 32.79 42.13 32.16 78.94 96.06 2.16
30% 7.17 31.72 42.29 34.94 78.38 92.34 2.12
50% 6.96 31.84 43.13 35.22 77.99 93.51 2.05
85% (Full) 6.26 30.92 48.80 33.87 69.87 93.60 1.46

TABLE 10
Evaluating the structure generalization of our method on the Chair

category in Structure Consistency Accuracy under different Structure
Ratios. Structure Ratios refer to the percentage of training samples

containing the target structure Ch013. SCA scores are reported in %.

Shape Structure Ratios SCA-Ch013

Chair

0% 80.38
10% 82.62
20% 84.99
30% 85.87
50% 86.49
85% (Full) 87.24

4.4.3 Diffusion Transformer
We also ablate our Diffusion Transformer (DiT) with Point-
Flow [9] and DPM [10]. SGN+PointFlow utilizes another

CNF module controlled by the latent code and part adja-
cency to learn the distribution of the origin point cloud.
SGN+DPM uses DDPM to diffuse point clouds, which is
also controlled by the latent code and part adjacency. The
denoising networks used in SGN+DPM are a series of fully
connected layers with feature concatenation and squashing.
Table 7 and Table 8 show that our SGN+DiT outperforms
SGN+PointFlow and SGN+DPM module in both Shape
Generation Metrics and Structure Consistency Accuracy,
proving the effectiveness of our proposed part adjacency
conditioned diffusion Transformer on structure controllable
point cloud generation.
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Fig. 12. The results of reconstructing surfaces from the point clouds generated on the Chair and Airplane categories.

Fig. 13. When the input structure is very different from the training set, our method has a specific generalization ability, as the input aircraft engine
is to be adjacent to both the wing and the tail wing (left column). Still, it may ignore this input structure, and the generated aircraft engine is only
adjacent to the wing (middle column). Besides, the top of the generated trash can is still adjacent to the body, although the two parts are not
connected in the input structure graph (right column).

4.4.4 Overall Framework

We also performed ablation studies on our overall frame-
work. We compare our overall framework with the frame-
work using two diffusion models and the framework us-
ing a single VAE. For the framework of two diffusion
models (DiT [42]), one diffusion model is used to learn
latent variables and the other one is used for point cloud
generation. For the framework of a single VAE, we utilize
the Conditional VAE [59]. As shown in Table 7, our method
outperforms the framework using two diffusion models and
the framework using a single VAE.

4.4.5 Structure Generalization

We designed an ablation experiment to evaluate the effec-
tiveness of our method in structure generalization. On the
Chair category of the ShapeNet dataset, we regard structure
Ch013 (the chair’s armrest is connected to both the seat
and the backrest) as the novel structure and use it as the
test set, and other structures as training sets. To assess the
generalization ability, we vary the proportion of samples
with the structure Ch013 included in the training set, which
we refer to as the Structure Ratios. We experiment with
Structure Ratios of 0%, 10%, 20%, 30%, 50%, and 85%,
where 85% corresponds to the original full training setup.
As shown in Table 9 and Table 10, when the Structure Ratios
is 0% (i.e., Ch013 is entirely unseen during training), our
method is still able to generate shapes that are reasonably
consistent with the desired structure, indicating its ability to
generalize to novel structural configurations. As more struc-
tures Ch013 are added to the training set, both the structure
consistency accuracy and the quality of the generated point
clouds gradually improve. These results demonstrate that
our method exhibits a strong capacity for generalizing to
unseen or rare structures by leveraging structural priors
learned from other configurations.

4.5 Surface Reconstruction Application
Figure 12 shows the results of reconstructing surfaces from
the point clouds generated on the Chair and Airplane cate-
gories. We use the pretrained SDF regression model of the
Point-E [11] to produce meshes from point clouds.

We follow the previous work, DiffFacto [12], and ran-
domly downsample the point clouds with more than 2048
points in the point cloud dataset to 2048 points. Therefore,
the point clouds generated by random sampling are rela-
tively challenging to reconstruct into meshes. In order to
be more suitable for surface reconstruction, we provide the
results of the point clouds generated by the dataset with the
farthest point sampling, as well as the meshes reconstructed
on these point clouds. Figure 12 indicates that the point
cloud shapes we generated can be well reconstructed as
meshes.

4.6 Implementation Details and Performance
We implement the proposed algorithm using Python. We
use the public pytorch implementation of DDPM as the
foundation for our point cloud generation model, which is
trained using a batch size of 128 and an initial learning rate
of 0.001 for 100,000 iterations.

Our approach is trained and tested on a PC with an Intel
Core i7 CPU, 32GB of RAM, and an NVIDIA GeForce GTX
4090 GPU. Our 3D point cloud generation method consists
of two main phases, including the training phase and the
sampling phase. In the training phase, our algorithm takes
about 2 days to train a single category shape for 100,000
iterations. In the sampling phase, generating 50 structure-
controlled 3D point cloud shapes takes about 4 seconds.

5 LIMITATIONS AND FUTURE WORK

The shape generation method presented in this paper re-
quires the annotation of segmentation semantic labels for
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3D point cloud shapes and the connectivity relationships be-
tween segmented parts. A potential follow-up work to this
paper is self-supervised controllable 3D point cloud shape
generation. This approach learns through self-supervision to
use the shape itself as the control condition without the need
for additional structural information. This could address
the issue of annotation being time-consuming and labor-
intensive.

We admit that our method relies heavily on the struc-
tures that appear in the training set. The structure of the
test input in the above ablation study is relatively similar to
that in the training set, so our method can have a specific
generalization ability. However, when the input structure is
very different from the training set, as shown in Figure 13,
our method may ignore the very different input structure
and generate shapes based on the learned structure that is
most similar to the input structure. We believe that increas-
ing the data in the dataset or fine-tuning on a specific dataset
can alleviate this problem, just like Stable Diffusion [35] and
Large Language Models [60].

Another possible future direction is combining 3D shape
generation with text control information to achieve text-
controlled 3D point cloud shape generation. While this pa-
per has realized controllable generation based on 3D shape
structure, text is a more abstract representation than shape
structure. Realizing this would require a more significant
amount of training data and fine-grained shape and text
annotation pairs.

6 CONCLUSION

In order to address the challenge of lacking control in
3D point cloud generation, this paper leverages the inher-
ent structure of 3D shapes. We control the generation of
corresponding point cloud shapes for shapes within the
same category by inputting different shape structures. We
manually annotate the adjacency relationships between seg-
mented parts of each shape, forming the StructureGraph
representation. In this graph, nodes represent segmented
parts of the point cloud, while edges denote the connectivity
relationships between these segmented parts. Utilizing this
StructureGraph representation, we propose StrucADT, a
novel structure-controllable point cloud generation model
built upon the part adjacency conditioned diffusion Trans-
former model. The StructureGraphNet module in StrucADT
extracts structure-aware latent features, whose distributions
are then learned by the cCNF module controlled by part ad-
jacency, and both the latent features and part adjacency are
incorporated into the Diffusion Transformer module as con-
ditional context to produce structure-controlled point cloud
shapes. Experimental results indicate that our structure-
controllable 3D point cloud generation method achieves
state-of-the-art performance on the ShapeNet dataset, gen-
erating high-quality and diverse point cloud shapes while
allowing users to control the generation of corresponding
point cloud shapes based on the input shape structures.
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