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Fig. 1. Given a polygonal surface with various defects—such as self-intersections (highlighted in red, (a)), non-manifold vertices (in purple, (b)), duplicate
facets (in cyan, (c)), and narrow gaps or cracks (bounded by green curves, (d))—we propose a unified method, supported by a wrap surface, to repair these
imperfections. Our approach generates a watertight, manifold mesh while preserving the inherent feature lines.
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Mesh repair is a critical process in 3D geometry processing aimed at cor-
recting errors and imperfections in polygonal meshes to produce watertight,
manifold, and feature-preserving meshes suitable for downstream tasks.
While errors such as degeneracies, duplication, holes, and overlaps can be
addressed through standard repair processes, cracks along trimmed curves
require special attention and should ideally be repaired to align with sharp
feature lines.

In this paper, we present a unified framework for repairing diverse mesh
imperfections by leveraging a manifold wrap surface as a mediating agent.
The primary role of the wrap surface is to define spatial connections between
points on the original surface, thereby decoupling the challenges of edge
connectivity and point relocation during repair. Throughout the process,
our algorithm operates on the dual objects: the original defective mesh and
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the manifold wrap surface. The implementation begins by extracting a set of
samples from the wrap surface and projecting them onto the original surface.
These projected samples are optimized by minimizing the quadratic error
relative to the tangent planes of neighboring points on the original surface.
Notably, samples far from feature lines remain unchanged, while samples
near feature lines converge to those lines even when the input surface lacks
correct mesh topology. We then assign an adaptive weight to each sample
based on the squared moving distance. By introducing this weight setting, we
observe that the restricted power diagram prioritizes connectivity along fea-
ture lines, thereby effectively preserving sharp features. Through extensive
experiments, we demonstrate the superiority of our proposed algorithm over
existing methodologies in terms of manifoldness, watertightness, topological
correctness, triangle quality, and feature preservation.

CCS Concepts: • Computing methodologies→ Shape analysis;Mesh
geometry models.

Additional Key Words and Phrases: mesh repair, restricted power diagram,
wrap surface, manifold and watertight
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1 Introduction
Mesh repair is a critical process in 3D geometry processing aimed
at correcting errors and imperfections in polygonal meshes, which
are commonly used in applications such as computer-aided design
(CAD), animation, 3D printing, and medical imaging. Mesh imper-
fections encompass a wide range of topological, geometric, and
feature-related errors that compromise the quality and usability of
3D models, as seen in datasets like Thingi10K [Zhou and Jacobson
2016] and ABC [Koch et al. 2019]. The goal of mesh repair is to pro-
duce watertight, manifold, and feature-preserving meshes suitable
for downstream tasks.

The imperfections of a defective mesh are diverse, including self-
intersections, non-manifold edges/vertices, duplicate facets, and
narrow gaps/cracks, as shown in Fig. 1 and Fig. 2. The primary chal-
lenge of mesh repair lies in developing a unified approach to address
these various defects. Traditional repair methods either focus on lo-
cal defect correction or adopt global strategies to ensure watertight-
ness and manifoldness [Attene et al. 2013]. However, local methods,
while effective at preserving fine details, may introduce new arti-
facts during repair [Attene 2010, 2014]. Global techniques [Chu et al.
2019; Ju 2004], such as volumetric representations and graph-based
algorithms, provide robust solutions but may suffer from the loss of
sharp features. In recent years, hybrid methods [Huang et al. 2020]
combine localized adjustments with global optimization to improve
both robustness and detail preservation. Additionally, visual-guided
techniques [Zheng et al. 2024] utilize visual correctness as a guiding
principle, leveraging visual cues such as visibility and orientation
to produce repairs that align with human perception.

The goals of this paper are three-fold. First, we aim to deliver an
all-in-one solution to the mesh repair problem. Second, considering
that cracks are often caused by trimmed curves, they should be
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based on the squared moving distance. By introducing this weight setting, we
observe that the restricted power diagram prioritizes connectivity along fea-
ture lines, thereby effectively preserving sharp features. Through extensive
experiments, we demonstrate the superiority of our proposed algorithm over
existing methodologies in terms of manifoldness, watertightness, topological
correctness, triangle quality, and feature preservation.

CCS Concepts: • Computing methodologies→ Shape analysis;Mesh
geometry models.
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1 INTRODUCTION
Mesh repair is a critical process in 3D geometry processing aimed
at correcting errors and imperfections in polygonal meshes, which
are commonly used in applications such as computer-aided design
(CAD), animation, 3D printing, and medical imaging. Mesh imper-
fections encompass a wide range of topological, geometric, and
feature-related errors that compromise the quality and usability of
3D models, as seen in datasets like Thingi10K [Zhou and Jacobson
2016] and ABC [Koch et al. 2019]. The goal of mesh repair is to pro-
duce watertight, manifold, and feature-preserving meshes suitable
for downstream tasks.

The imperfections of a defective mesh are diverse, including self-
intersections, non-manifold edges/vertices, duplicate facets, and
narrow gaps/cracks, as shown in Fig. 1 and Fig. 2. The primary chal-
lenge of mesh repair lies in developing a unified approach to address
these various defects. Traditional repair methods either focus on lo-
cal defect correction or adopt global strategies to ensure watertight-
ness and manifoldness [Attene et al. 2013]. However, local methods,
while effective at preserving fine details, may introduce new arti-
facts during repair [Attene 2010, 2014]. Global techniques [Chu et al.
2019; Ju 2004], such as volumetric representations and graph-based
algorithms, provide robust solutions but may suffer from the loss of
sharp features. In recent years, hybrid methods [Huang et al. 2020]
combine localized adjustments with global optimization to improve
both robustness and detail preservation. Additionally, visual-guided
techniques [Zheng et al. 2024] utilize visual correctness as a guiding
principle, leveraging visual cues such as visibility and orientation
to produce repairs that align with human perception.

The goals of this paper are three-fold. First, we aim to deliver an
all-in-one solution to the mesh repair problem. Second, considering
that cracks are often caused by trimmed curves, they should be
repaired to align with sharp feature lines rather than simply being
filled. As Fig. 2 shows, VisualRepair [Chu et al. 2019] entirely over-
looks the cracks, while VolumeMesher [Diazzi and Attene 2021]
treats these cracks as simple holes, filling them with narrow tri-
angles. Finally, we ensure that the repaired model maintains high
triangle quality.

In this paper, we present a unified framework for repairing various
imperfections by leveraging a manifold wrap surface as a mediating
agent. Throughout the process, our algorithm operates on the dual

(a) Imperfect input (b) VisualRepair

(c) VolumeMesher (d) Ours
Fig. 2. (a) A polygonal surface exhibits various defects, including self-
intersections (highlighted in red), duplicate facets (in cyan), cracks (bounded
by green curves), unoriented facets (in yellow), and non-manifold edges
(in purple). (b) VisualRepair [Chu et al. 2019] entirely overlooks the cracks.
(c) VolumeMesher [Diazzi and Attene 2021] treats these cracks as simple
holes, filling themwith narrow triangles. (d) Our approach not only preserves
geometric feature lines during mesh repair but also generates high-quality
triangles.

objects: the original defective mesh and the manifold wrap surface.
To elaborate, movable points are constrained on the original mesh,
but the connections between them are defined based on how they
partition the wrap surface. In this way, we decouple the challenges
of edge connectivity and point relocation.
Our implementation begins by extracting a representative set

of samples from the wrap surface and projecting them onto the
original surface. Next, following the spirit of QEM (Quadric Error
Metrics) [Garland and Heckbert 1997], we fine-tune the position of
each sample by minimizing its quadratic error relative to the tangent
planes of neighboring points, ensuring optimal alignment. During
this process, samples far from feature lines remain unchanged, while
those near feature lines converge precisely to the lines—even in cases
where cracks lie along trimmed curves or two walls intersect.

Finally, based on the moving distance of each sample, we compute
the restricted power diagram on the wrap surface, assigning each
sample a weight equal to the squared moving distance. We observe
that the restricted power diagram, with this weight setting, priori-
tizes connectivity along feature lines, thereby effectively preserving
sharp features. As shown in Fig. 2, our algorithm excels in triangle
quality and feature preservation.

In summary, our contributions are threefold:
(1) We propose a conceptually unified algorithm to repair various

imperfections. By leveraging a manifold wrap surface as a me-
diating agent, we ensure the repaired mesh is both watertight
and manifold.

(2) We encourage samples near feature lines to converge precisely
onto the feature lines by minimizing the quadratic error of each
sample relative to the tangent planes of neighboring points.
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Fig. 2. (a) A polygonal surface exhibits various defects, including self-
intersections (highlighted in red), duplicate facets (in cyan), cracks (bounded
by green curves), unoriented facets (in yellow), and non-manifold edges
(in purple). (b) VisualRepair [Chu et al. 2019] entirely overlooks the cracks.
(c) VolumeMesher [Diazzi and Attene 2021] treats these cracks as simple
holes, filling themwith narrow triangles. (d) Our approach not only preserves
geometric feature lines during mesh repair but also generates high-quality
triangles.

repaired to align with sharp feature lines rather than simply being
filled. As Fig. 2 shows, VisualRepair [Chu et al. 2019] entirely over-
looks the cracks, while VolumeMesher [Diazzi and Attene 2021]
treats these cracks as simple holes, filling them with narrow tri-
angles. Finally, we ensure that the repaired model maintains high
triangle quality.

In this paper, we present a unified framework for repairing various
imperfections by leveraging a manifold wrap surface as a mediating
agent. Throughout the process, our algorithm operates on the dual
objects: the original defective mesh and the manifold wrap surface.
To elaborate, movable points are constrained on the original mesh,
but the connections between them are defined based on how they
partition the wrap surface. In this way, we decouple the challenges
of edge connectivity and point relocation.
Our implementation begins by extracting a representative set

of samples from the wrap surface and projecting them onto the
original surface. Next, following the spirit of QEM (Quadric Error
Metrics) [Garland and Heckbert 1997], we fine-tune the position of
each sample by minimizing its quadratic error relative to the tangent
planes of neighboring points, ensuring optimal alignment. During
this process, samples far from feature lines remain unchanged, while
those near feature lines converge precisely to the lines—even in cases
where cracks lie along trimmed curves or two walls intersect.

Finally, based on the moving distance of each sample, we compute
the restricted power diagram on the wrap surface, assigning each
sample a weight equal to the squared moving distance. We observe
that the restricted power diagram, with this weight setting, priori-
tizes connectivity along feature lines, thereby effectively preserving
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sharp features. As shown in Fig. 2, our algorithm excels in triangle
quality and feature preservation.
In summary, our contributions are threefold:

(1) We propose a conceptually unified algorithm to repair various
imperfections. By leveraging a manifold wrap surface as a me-
diating agent, we ensure the repaired mesh is both watertight
and manifold.

(2) We encourage samples near feature lines to converge precisely
onto the feature lines by minimizing the quadratic error of each
sample relative to the tangent planes of neighboring points.

(3) We employ a restricted power diagram to construct the final
repaired surface, introducing a specially designed weight setting
to ensure alignment with feature lines.

2 Related Work
In this section, we review several representative works on repairing
defective meshes. Additionally, as our approach involves the com-
putation of power diagrams, we review algorithms for constructing
restricted power diagrams (RPDs).

2.1 Mesh Repair
Mesh repair methods have been extensively studied over the past
two decades. As highlighted in comprehensive surveys [Attene et al.
2013; Ju 2009], these methods can be broadly classified into two
main categories: local and global approaches. Local methods aim
to address specific defects by analyzing and modifying localized
regions of the mesh. In contrast, global methods overcome the lim-
itations of local approaches by treating the entire mesh within a
unified framework. These techniques often leverage volumetric rep-
resentations to identify and resolve inconsistencies across the entire
mesh comprehensively.

Local Methods. Local methods address defects within small, local-
ized regions of the mesh, aiming to minimize unnecessary changes
and preserve the original geometry. Techniques such as sparse adap-
tive voxelization combined with dual contouring effectively resolve
mesh self-intersections [Bischoff et al. 2005; Ju et al. 2002]. Similarly,
self-intersections can be handled by cutting along intersection lines
and locally stitching the mesh [Attene 2014], while a more recent
approach [Guo and Fu 2024] leverages indirect offset predicates
for resolving intersections. Gaps and holes are repaired through
methods like surface alignment and stitching with weighted averag-
ing [Turk and Levoy 1994], or by using unsigned distance functions
combined with graph-based optimization [Hornung and Kobbelt
2006]. Another approach [Zhao et al. 2007] involves filling holes by
creating new triangles, approximating normals, and repositioning
vertices using Poisson solvers. To enhance mesh quality, some meth-
ods [Attene 2010] trim excessively slender triangles or apply Binary
Space Partitioning (BSP) to remove non-manifold and degenerate
defects. While local methods are efficient and strive to retain as
much of the original geometry as possible, they may lack robustness
and occasionally introduce new defects.
Global Methods.While local approaches focus on detecting and

fixing specific types of defects, global methods address a broader
range of interconnected problems, ensuring that the output forms
manifold surfaces enclosing a 3D solid. Most global methods rely

on volumetric representations to define and resolve inconsisten-
cies across the entire mesh. Some techniques [Andújar et al. 2002;
Marschner et al. 2002; Oomes et al. 1997] enable the mutual conver-
sion between mesh and voxel representations, effectively reducing
topological defects. Others integrate range images into cumulative
signed distance functions to extract optimized iso-surfaces [Curless
and Levoy 1996] or employ space carving methods [Furukawa et al.
2007; Portaneri et al. 2022] to generate watertight manifold meshes.
Morphological operator-based methods repair meshes by convert-
ing between volumetric and polygonal representations [Nooruddin
and Turk 2003], ensuring watertight manifold properties while of-
fering fine-grained controllability [Hétroy et al. 2011]. Despite their
versatility, global methods often struggle to preserve sharp feature
lines and fine details, making precise mesh repair challenging in
certain applications.
Hybrid Methods. Robust mesh repair methods that preserve fea-

ture lines have been proposed to address the limitations of tra-
ditional approaches. Techniques based on biharmonic fields [Ar-
gudo et al. 2015] have proven effective for handling complex topolo-
gies. ManifoldPlus [Huang et al. 2020] introduces a method that
extracts meshes between occupied and empty voxels, employing
projection-based optimization to obtain watertight manifold meshes.
VolumeMesher [Diazzi and Attene 2021] leverages indirect geomet-
ric predicates and solves minimum graph cut problems to gener-
ate high-quality meshes with improved accuracy. ImatiSTL [At-
tene 2017] combines floating-point and exact arithmetic, balanc-
ing efficiency and precision when handling defective geometries.
TetWild [Hu et al. 2018] distinguishes mesh interiors and exteriors
using winding numbers. Vision-based methods [Chu et al. 2019]
adhere to principles of global optimization and minimal local modi-
fications, while another approach [Zheng et al. 2024] employs three
ray tracing-based metrics—visibility, orientation, and openness—to
guide repairs.

Although existing methods can resolve many mesh defects, they
often struggle with inherent CAD model defects such as narrow
gaps and self-intersections near feature lines.

2.2 Restricted Voronoi and Power Diagrams
Accurately computing restricted power diagrams (RPD) remains
challenging. While 3D clipped Voronoi diagram algorithms [Meng
et al. 2023; Yan et al. 2010] and industry-standard tools [Fabri and
Pion 2009; Lévy and Filbois 2015; Xu et al. 2024] compute restricted
Voronoi diagrams (RVD), they often exhibit long computation times.
Recent GPU parallelization efforts [Basselin et al. 2021; Liu et al.
2022; Ray et al. 2018] have accelerated Voronoi/power diagram com-
putations. Notably, Basselin et al. [2021] developed a method to
compute integrals over RPD cells without explicit diagram con-
struction. Wang et al. [2020] proposed a robust RVD computation
for thin-plate models, later extended by a parallel post-processing
method [Zong et al. 2023]. Yan et al. [2009] demonstrated RVD
applications in isotropic remeshing. Recent work utilizes RPD for
medial axis transforms preserving geometric features [Wang et al.
2024, 2022] and CAD reconstruction [Xu et al. 2022] with feature
line preservation.
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(a) Wrap surface (b) Sampling points (c) Shifting points (d) RPD (e) Repaired surface
Fig. 3. Algorithm Overview. Given a polygonal surface with self-intersections (highlighted in red), our approach begins by constructing a wrap surface (in
purple) as an intermediate representation (a). Next, we project 𝑁 movable points, extracted from the wrap surface, onto the input surface (b). Following
the principle of QEM (Quadric Error Metrics), we fine-tune the position of each sample by minimizing its quadratic error relative to the tangent planes of
neighboring points. During this process, samples far from feature lines remain unchanged, while those near feature lines converge precisely to the lines (c).
Subsequently, we compute the restricted power diagram (d). Finally, its dual structure, the restricted regular triangulation (e), yields the repaired surface,
eliminating various imperfections while preserving distinctive feature lines.

Step 1. Compute the wrap surface.
Step 2. Sample 𝑁 point from the wrap surface and project them
onto the input surface.
Step 3. Following the principle of QEM (Quadric Error Metrics),
fine-tune the position of each sample by minimizing its quadratic
error relative to the tangent planes of neighboring points.
Step 4. Assign an adaptive weight to each optimized point and
compute the restricted power diagram (RPD) on the wrap surface.
Step 5. Extract the dual structure of the RPD as the final repaired
outcome.

3.1 Wrap Surface and Initial Sample Set
Alpha Wrapping [Portaneri et al. 2022] refines and sculpts a 3D
Delaunay triangulation on an offset surface of the input model in
a greedy manner. Its most significant advantage is the ability to
produce a high-quality manifold mesh surface S that completely
encloses the original mesh M, even when processing defective
inputs. The method includes two parameters: one parameter 𝜖 to
control the offset distance and the other 𝛼 to determine the meshing
density. All models were normalized to fit within a unit bounding
box in our experiments, with parameter values set to 𝜖 = 1/3000
and 𝛼 = 1/500.

Next stage, we uniformly sample 𝑁 points using blue-noise sam-
pling [Corsini et al. 2012], {x𝑖 }𝑁𝑖=1, from the wrap surface and then
project them onto the original mesh surface:

y𝑖 = argmin
y∈M

∥y − x𝑖 ∥2 .

Note that y𝑖 may be a vertex, an edge point, or a surface point. If y𝑖
is a vertex or an edge point, there is ambiguity in defining its normal
vector, which introduces difficulty in the subsequent point relocation
process. To address this, we introduce a small perturbation to y𝑖
while still restricting it to the original mesh surface.

As a result, we obtain a point set {y𝑖 }𝑁𝑖=1 lying on the surfaceM,
with each point located in the interior of a triangle. On the one hand,
we treat these points as movable but constrain their movement
toM. On the other hand, we use the wrap surface S to define the
connections between these points, even though they do not lie on S.

Fig. 4. Our point-shifting strategy effectively handles cases where two walls
penetrate each other, pulling nearby points onto potential feature lines.

3.2 Point Relocation
Neighboring Relationship. Since the points {y𝑖 }𝑁𝑖=1 reside on the

defective surface M, defining valid connections between them is
challenging. Interestingly, this can be efficiently addressed with the
help of the wrap surface S.

Recall that the point set {x𝑖 }𝑁𝑖=1 defines the restricted Voronoi Dia-
gram (RVD) of the wrap surfaceS, which offers a simple solution: y𝑖
is connected to y𝑗 if and only if x𝑖 is connected to x𝑗 .

Point Displacement. Based on the above discussion, we can deter-
mine the neighboring relationships between {y𝑖 }𝑁𝑖=1. At this stage,
we optimize each point in {y𝑖 }𝑁𝑖=1 independently. Specifically, the
new position ynew𝑖 depends only on the previous locations {y𝑖 }𝑁𝑖=1,
with no dependence between ynew𝑖 and ynew𝑗 . The point displace-
ment strategy for y𝑖 follows the spirit of QEM (Quadric Error Met-
rics) [Garland and Heckbert 1997]:

ynew𝑖 = argmin
y

∑︁
y𝑗 ∈𝑁 (𝑖 )

(
(y − y𝑗 ) · n𝑗

)2
+ 𝜇∥y − y𝑖 ∥2, (1)

where 𝑁 (𝑖) represents y𝑖 ’s 1-ring neighboring points, n𝑖 denotes
the unit normal vector at y𝑖 (corresponding to the normal of the
facet ofM containing y𝑖 ), and 𝜇 is set to 0.01 in our experiments.
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Fig. 3. Algorithm Overview. Given a polygonal surface with self-intersections (highlighted in red), our approach begins by constructing a wrap surface (in
purple) as an intermediate representation (a). Next, we project 𝑁 movable points, extracted from the wrap surface, onto the input surface (b). Following
the principle of QEM (Quadric Error Metrics), we fine-tune the position of each sample by minimizing its quadratic error relative to the tangent planes of
neighboring points. During this process, samples far from feature lines remain unchanged, while those near feature lines converge precisely to the lines (c).
Subsequently, we compute the restricted power diagram (d). Finally, its dual structure, the restricted regular triangulation (e), yields the repaired surface,
eliminating various imperfections while preserving distinctive feature lines.

3 Methodology
Given a defective model M with various imperfections, the task of
this paper is to provide an all-in-one solution for repairing these
defects. Specifically, the defective model may have cracks along
trimmed curves or contain two walls penetrating each other, where
feature lines need to be reconstructed.
Our algorithm operates on a pair of objects: the original sur-

faceM and a wrap surface S, which is a manifold surface tightly
wrapping the original surface. As shown in Fig. 3, the algorithm
consists of the following steps:
Step 1. Compute the wrap surface.
Step 2. Sample 𝑁 point from the wrap surface and project them
onto the input surface.
Step 3. Following the principle of QEM (Quadric Error Metrics),
fine-tune the position of each sample by minimizing its quadratic
error relative to the tangent planes of neighboring points.
Step 4. Assign an adaptive weight to each optimized point and
compute the restricted power diagram (RPD) on the wrap surface.
Step 5. Extract the dual structure of the RPD as the final repaired
outcome.

3.1 Wrap Surface and Initial Sample Set
Alpha Wrapping [Portaneri et al. 2022] refines and sculpts a 3D
Delaunay triangulation on an offset surface of the input model in
a greedy manner. Its most significant advantage is the ability to
produce a high-quality manifold mesh surface S that completely
encloses the original mesh M, even when processing defective
inputs. The method includes two parameters: one parameter 𝜖 to
control the offset distance and the other 𝛼 to determine the meshing
density. All models were normalized to fit within a unit bounding
box in our experiments, with parameter values set to 𝜖 = 1/3000
and 𝛼 = 1/500.

Next stage, we uniformly sample 𝑁 points using blue-noise sam-
pling [Corsini et al. 2012], {x𝑖 }𝑁𝑖=1, from the wrap surface and then
project them onto the original mesh surface:

y𝑖 = argmin
y∈M

∥y − x𝑖 ∥2 .

Fig. 4. Our point-shifting strategy effectively handles cases where two walls
penetrate each other, pulling nearby points onto potential feature lines.

Note that y𝑖 may be a vertex, an edge point, or a surface point. If y𝑖
is a vertex or an edge point, there is ambiguity in defining its normal
vector, which introduces difficulty in the subsequent point relocation
process. To address this, we introduce a small perturbation to y𝑖
while still restricting it to the original mesh surface.

As a result, we obtain a point set {y𝑖 }𝑁𝑖=1 lying on the surfaceM,
with each point located in the interior of a triangle. On the one hand,
we treat these points as movable but constrain their movement
toM. On the other hand, we use the wrap surface S to define the
connections between these points, even though they do not lie on S.

3.2 Point Relocation
Neighboring Relationship. Since the points {y𝑖 }𝑁𝑖=1 reside on the

defective surface M, defining valid connections between them is
challenging. Interestingly, this can be efficiently addressed with the
help of the wrap surface S.

Recall that the point set {x𝑖 }𝑁𝑖=1 defines the restricted Voronoi Dia-
gram (RVD) of the wrap surfaceS, which offers a simple solution: y𝑖
is connected to y𝑗 if and only if x𝑖 is connected to x𝑗 .

Point Displacement. Based on the above discussion, we can deter-
mine the neighboring relationships between {y𝑖 }𝑁𝑖=1. At this stage,
we optimize each point in {y𝑖 }𝑁𝑖=1 independently. Specifically, the
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new position ynew𝑖 depends only on the previous locations {y𝑖 }𝑁𝑖=1,
with no dependence between ynew𝑖 and ynew𝑗 . The point displace-
ment strategy for y𝑖 follows the spirit of QEM (Quadric Error Met-
rics) [Garland and Heckbert 1997]:

ynew𝑖 = argmin
y

∑︁
y𝑗 ∈𝑁 (𝑖 )

(
(y − y𝑗 ) · n𝑗

)2
+ 𝜇∥y − y𝑖 ∥2, (1)

where 𝑁 (𝑖) represents y𝑖 ’s 1-ring neighboring points, n𝑖 denotes
the unit normal vector at y𝑖 (corresponding to the normal of the
facet ofM containing y𝑖 ), and 𝜇 is set to 0.01 in our experiments.

y𝑖

y𝑗n𝑗

ynew𝑖

Note that in Eq. (1), the
first term drives the point y
to align with the normals
of its neighboring points.
When the neighboring points
are coplanar, this term van-
ishes, so the optimal posi-
tion of y is unchanged. Con-
versely, if the neighbors are
not coplanar, y is pulled to-
ward the local “corner” formed by their normals. In the 2D inset,
for example, two neighboring points lie on different lines; the first
term is minimized only when ymoves to their intersection. The sec-
ond term simultaneously penalizes large displacements, preventing
overshooting.

We justify the effectiveness of this strategy as follows. First, even
if a triangle in M is flipped, the quadratic error remains unaffected,
so the updated position ynew𝑖 is still well defined. Second, although
the same optimization is applied to every sample in {y𝑖 }𝑁𝑖=1, its
influence is location dependent: points far from feature lines remain
almost stationary, whereas points near feature lines are naturally
attracted toward them. In Fig. 4, for instance, two walls intersect
and the original mesh completely loses the correct topology around
the intersection curve. Instead of explicitly detecting this curve, the
point-shifting procedure automatically drags nearby samples onto
it. Moreover, any redundant interior geometry is ignored, because
no sample point on the wrap surface S can be projected onto such
spurious elements.
To summarize, the main operation in this step is solving a qua-

dratic optimization problem, equivalent to solving a linear system,
to compute the displacement of each point. This process is applied
indiscriminately to each point in {y𝑖 }𝑁𝑖=1 only once. At the end of
this process, each point y𝑖 obtains a displacement:

(𝛿y)𝑖 = ynew𝑖 − y𝑖 .

3.3 Surface Extraction with RPD
The final stage of the algorithm involves extracting a manifold and
watertight repaired surface using the optimized points ynew𝑖 . For this
task, the restricted Voronoi diagram (RVD) [Edelsbrunner and Shah
1994; Yan et al. 2009] is a commonly used tool in mesh generation.
However, the RVD treats each site with equal importance, and as a
result, the resulting triangulation may not align well with potential
feature lines if the edge points are not sufficiently dense. In contrast,
the restricted Power diagram (RPD) [Basselin et al. 2021] allows for
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We justify the effectiveness of this strategy as follows. First, even
if a triangle in M is flipped, the quadratic error remains unaffected,
so the updated position ynew𝑖 is still well defined. Second, although
the same optimization is applied to every sample in {y𝑖 }𝑁𝑖=1, its
influence is location dependent: points far from feature lines remain
almost stationary, whereas points near feature lines are naturally
attracted toward them. In Fig. 4, for instance, two walls intersect
and the original mesh completely loses the correct topology around
the intersection curve. Instead of explicitly detecting this curve, the
point-shifting procedure automatically drags nearby samples onto
it. Moreover, any redundant interior geometry is ignored, because
no sample point on the wrap surface S can be projected onto such
spurious elements.
To summarize, the main operation in this step is solving a qua-

dratic optimization problem, equivalent to solving a linear system,
to compute the displacement of each point. This process is applied
indiscriminately to each point in {y𝑖 }𝑁𝑖=1 only once. At the end of
this process, each point y𝑖 obtains a displacement:

(𝛿y)𝑖 = ynew𝑖 − y𝑖 .

3.3 Surface Extraction with RPD
The final stage of the algorithm involves extracting a manifold and
watertight repaired surface using the optimized points ynew𝑖 . For this
task, the restricted Voronoi diagram (RVD) [Edelsbrunner and Shah
1994; Yan et al. 2009] is a commonly used tool in mesh generation.
However, the RVD treats each site with equal importance, and as a
result, the resulting triangulation may not align well with potential
feature lines if the edge points are not sufficiently dense. In contrast,
the restricted Power diagram (RPD) [Basselin et al. 2021] allows for
a more flexible weight setting by assigning greater influence to edge
points.
In our approach, only points situated near potential features

exhibit significant displacement, while all other points remain nearly
unchanged. Consequently, we assign the squared distance ∥(𝛿y)𝑖 ∥2
to the site ynew𝑖 during the RPD calculation. Its dual structure yields
the final repaired triangle mesh. As shown in Fig. 5, the weighting
strategy effectively preserves the feature-line alignment property.

We explain the weight setting as follows. First, it can be observed
that when (𝛿y)𝑖 does not vanish, it is very likely to reside near
a feature line, which implies that we must increase the influence
of ynew𝑖 . Second, consider two sites y1 and y2, which are projected
to nearly the same position on the feature line, i.e., ynew1 and ynew2

(a) RVD (b) RPD

(c) Dual of RVD (d) Dual of RPD
Fig. 5. RPD exhibits superior feature line preservation compared to RVD.

are close to each other. In this case,��∥(𝛿y)1∥2 − ∥(𝛿y)2∥2
�� ≫ ∥ynew1 − ynew2 ∥2,

making one of them a hidden site based on the principle of the
power diagram. Furthermore, this approach works for both convex
and concave feature lines.

At first glance, it may seem feasible to extract a sufficiently dense
set of samples from the defective mesh and then perform surface
reconstruction to obtain a repaired outcome. However, this does
not work in practice. Existing surface reconstruction methods fall
into two main categories: implicit approaches, which infer a scalar
field whose zero level set approximates the geometry, and explicit
approaches [Fu et al. 2024; Salman et al. 2010; Ye et al. 2024; Zhao
et al. 2023], which directly infer meshing topology from the point
set. Since mesh repair requires fully respecting sample positions,
implicit approaches are ruled out. As for explicit methods, even
with extra points inserted along feature lines, the reconstructed
mesh may still fail to recover the correct topology, because the
reconstruction process operates independently of the original mesh
structure. Moreover, if the defectivemesh contains self-intersections,
applying explicit reconstruction would require detecting all self-
intersections beforehand—a computationally expensive process.

To overcome these challenges, we leverage a wrap surface. On one
hand, the wrap surface is computed with reference to the defective
mesh, allowing approximate recovery of the correct geometry, albeit
with slight compromises in precision and feature preservation. The
RPD of the wrap surface ensures the output mesh is manifold, with
vertices either exactly sampled from the original surface or newly
predicted along feature lines. On the other hand, Eq. (1) naturally
attracts points near self-intersection lines to their correct positions.
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to the site ynew𝑖 during the RPD calculation. Its dual structure yields
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strategy effectively preserves the feature-line alignment property.

We explain the weight setting as follows. First, it can be observed
that when (𝛿y)𝑖 does not vanish, it is very likely to reside near
a feature line, which implies that we must increase the influence
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power diagram. Furthermore, this approach works for both convex
and concave feature lines.

At first glance, it may seem feasible to extract a sufficiently dense
set of samples from the defective mesh and then perform surface
reconstruction to obtain a repaired outcome. However, this does
not work in practice. Existing surface reconstruction methods fall
into two main categories: implicit approaches, which infer a scalar
field whose zero level set approximates the geometry, and explicit
approaches [Fu et al. 2024; Salman et al. 2010; Ye et al. 2024; Zhao
et al. 2023], which directly infer meshing topology from the point
set. Since mesh repair requires fully respecting sample positions,
implicit approaches are ruled out. As for explicit methods, even
with extra points inserted along feature lines, the reconstructed
mesh may still fail to recover the correct topology, because the
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Table 1. The statistics of imperfections for the defective meshes correspond-
ing to the repaired models in Fig. 6.

Model ID # OB # NMV # NME # SI # DF
1 8 1 1 6 0
2 3 0 0 35 7
3 2274 0 0 1 16
4 0 5 2 11 0
5 1 0 2 18 0
6 43260 0 0 91 0
7 14586 10 2 54 9
8 24 0 0 0 0
9 8 1 1 5 0
10 3 3 1 21 2

reconstruction process operates independently of the original mesh
structure. Moreover, if the defectivemesh contains self-intersections,
applying explicit reconstruction would require detecting all self-
intersections beforehand—a computationally expensive process.

To overcome these challenges, we leverage a wrap surface. On one
hand, the wrap surface is computed with reference to the defective
mesh, allowing approximate recovery of the correct geometry, albeit
with slight compromises in precision and feature preservation. The
RPD of the wrap surface ensures the output mesh is manifold, with
vertices either exactly sampled from the original surface or newly
predicted along feature lines. On the other hand, Eq. (1) naturally
attracts points near self-intersection lines to their correct positions.

4 Experiments

4.1 Experimental Setting
We implemented our algorithm in C++ on a desktop computer
equipped with an Intel Core i9-13900K CPU and 64 GB of RAM. The
implementation utilizes Eigen [Guennebaud et al. 2010] for linear
algebra routines and Libigl [Jacobson et al. 2018] for fundamental
geometry processing tasks. To optimize the energy in Eq. (1), we
employed Ceres-Solver [Agarwal et al. 2023], while the computation
of the RPD followed the approach outlined in [Xiao et al. 2023].

4.2 Validation
To evaluate the robustness of our algorithm, we conducted experi-
ments onman-made datasets that inherently contain various defects,
such as ABC [Koch et al. 2019] and Thingi10K [Zhou and Jacobson
2016]. To further assess the feature-preservation capability of our
method, we manually introduced additional defects, detailed in Sec-
tion 1, to selected models from these datasets. For the evaluation,
we selected 2K defective meshes. Our method demonstrated strong
robustness, with only 17 failure cases: 5 due to wrap surface fail-
ure (e.g., Model #93366 from Thingi10K), and 12 due to insufficient
point sampling, which led to missing or mixed feature lines. Notably,
the latter can be mitigated by increasing the sampling density. In
addition, we selected 10 representative repaired models for visu-
alization, as shown in Fig. 6. Each corresponding imperfect mesh
exhibits multiple types of defects, including open boundaries (OB),

non-manifold vertices and edges (NMV/NME), self-intersections
(SI), and duplicate facets (DF), as detailed in Table 1.

4.3 Comparison Methods
To demonstrate the superiority of our mesh repair method in pre-
serving feature lines, we compare our algorithm against the follow-
ing state-of-the-art methods1: TetWild (TW) [Hu et al. 2018] and
VolumeMesher (VM) [Diazzi and Attene 2021] use BSP-based gap
closure but are highly sensitive to input orientations, producing
inconsistent results when faced withmisorientations or nested struc-
tures. VisualRepair (VisR) [Chu et al. 2019] utilizes visual guidance
to segment surfaces, which can lead to gaps and non-watertight
patches. MeshFix (MF) [Attene 2010] addresses local inconsisten-
cies but lacks the capability to preserve the global shape. Bihar-
monic Repair (BR) [Argudo et al. 2015] approximates SDFs using
bi-harmonic fields, but fails to maintain sharp features. Manifold-
Plus (MP) [Huang et al. 2020] and Alpha Wrapping (AW) [Portaneri
et al. 2022] construct watertight enclosures via displacement but
compromise feature integrity, with MP introducing face duplication
and self-intersections.

4.4 Comparisons on Imperfect Meshes
We evaluated the quality of the repaired mesh using several metrics,
including OB, NMV/NME, SI, normal consistency (NC), and the tri-
angle quality (TQ). To quantify the difference between the repaired
mesh and the original imperfect mesh, we employed four indicators:
Chamfer Distance (CD), F-score (F1), Normal Consistency (NC), and
Hausdorff Distance (HD). Furthermore, for CAD models, we utilized
Edge Chamfer Distance (ECD) and Edge F-score (EF1) proposed by
NMC [Chen and Zhang 2021] to assess the sharpness of the repaired
mesh and its ability to preserve sharp features.

Qualitative comparisons are presented in Fig. 7, with correspond-
ing quantitative metrics summarized in Table 2 and computational
time provided in Table 3. In the first two rows of Fig. 7, defects such
as non-manifold vertices (highlighted in purple), narrow gaps (bounded
by green curves), and self-intersections (in red) near feature lines
remain unrepaired by methods like TW, MP, and VM. Although
other methods manage to address these imperfections, they fail to
preserve the original features accurately. Additionally, some models
in the Thingi10K dataset are fragmented into multiple discrete trian-
gles, a defect that neither MF nor BR can process effectively. In cases
where the imperfect models contain isolated small components, only
TW and our method successfully handle these challenges, as shown
in the third row of Fig. 7.

To assess the robustness of our methodology, 20% of the triangles
within a triangle mesh were randomly selected and deliberately
fragmented into several smaller discrete triangles. Subsequently,
these fragments were subjected to rotations around their normal
vectors at the barycenters by a random angle, intentionally inducing
various defects such as self-intersections, folded faces, and gaps, as
depicted in Fig. 8(a). In Fig. 8, we conduct a comparative analysis of
our approach with alternative methods capable of generating output
meshes for visualization. TW was unable to produce the expected

1While [Zheng et al. 2024] reports the ability to handle such models, no open-source
code has been provided for verification.
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Fig. 6. A gallery of repair results by our algorithm.

Table 2. Statistics of comparisons for the models in Fig. 7. In each column, the best scores are emphasized in bold with under lining, while the second best
scores are highlighted only in bold.

Methods # OB ↓ # NMV ↓ # NME ↓ # SI ↓ TQ ↑ NC ↑ CD (×104) ↓ F1 ↑ HD (×102) ↓ ECD (×102) ↓ EF1 ↑
MF 0 0 0 0 0.382 0.914 43.635 0.863 19.712 2.598 0.308
BR 1 0 0 111 0.654 0.979 0.209 0.921 1.906 0.745 0.432
TW 0 7 18 5 0.716 0.897 4.649 0.814 7.074 2.995 0.231
VisR 20 1 0 2 0.414 0.976 0.176 0.949 1.004 0.819 0.519
MP 0 0 0 426 0.613 0.982 0.161 0.850 1.313 1.573 0.366
VM 0 69 219 59 0.388 0.989 0.194 0.913 4.591 2.167 0.389
AW 0 0 0 0 0.765 0.976 0.177 0.890 2.024 3.298 0.297
Ours 0 0 0 0 0.778 0.993 0.172 0.927 1.229 0.930 0.485

Table 3. Comparative execution time (seconds) of the evaluated methods
across models in Fig. 7.

MF BR TW VisR MP VM AW Ours
0.047 8.270 14.048 3.208 3.676 0.102 26.892 39.141
0.035 4.375 18.669 2.562 0.906 0.094 15.648 26.608
0.896 139.678 78.236 46.926 8.812 4.547 42.544 54.409

meshes, whereas MP successfully generated meshes but introduced
duplicate triangles, clearly observable as black regions in the figure.
AW generated high-quality triangulations; however, it was unable
to maintain sharp geometric features.
Furthermore, these methodologies were evaluated on an imper-

fect mesh characterized by a missing feature line and surrounding
open boundaries, as illustrated in Fig. 9. Among all the methods,
ours was uniquely capable of recovering the sharp feature.

4.5 Ablation Study
Wrap surface vs. Poisson surface. In the first stage of our algorithm,
we utilize a manifold wrap surface as a mediating agent for the im-
perfect mesh. However, the Poisson surface, as proposed in [Xu et al.
2022], is another commonly used proxy. To evaluate the differences,

we implemented the Poisson surface as an alternative proxy and con-
ducted comparisons with the wrap surface while keeping all other
experimental settings consistent. Since the Poisson surface requires
consistent normals as input, we first reorient all faces coherently
to ensure fairness in comparison. Subsequently, 10K points were
sampled on the mesh surface to reconstruct the Poisson surface.
However, due to the Poisson surface being constructed based on the
entire set of sampled points, including those from internal struc-
tures, it may result in the formation of holes or self-intersections,
as illustrated in Fig. 10.

Influence of Parameters. The wrap distance 𝜖 governs the proximity
between the wrap surface and the initial mesh, and it determines the
granularity of detail captured. Within our algorithm, both Voronoi
and power diagrams are derived based on the wrap surface, thereby
its level of detail has a direct impact on the accuracy and feature
retention in the repaired surface. As 𝜖 increases, there may be a
reduction in the inherent details of the original mesh in the repaired
configuration, as depicted in Fig. 11. Consequently, we assign a
lower default value of 1/3000 to 𝜖 .
Within our algorithm, the parameter 𝜇 in Eq. (1) is pivotal in

regulating point movements towards potential feature lines, thereby
ensuring geometric integrity throughout the repair process. A lower
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Table 2. Statistics of comparisons for the models in Fig. 7. In each column, the best scores are emphasized in bold with under lining, while the second best
scores are highlighted only in bold.
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Fig. 7. Comparison with state-of-the-art methods on CAD and organic model with multiple defects. Our method effectively repairs the mesh while preserving
geometric features.

Table 3. Comparative execution time (seconds) of the evaluated methods
across models in Fig. 7.

MF BR TW VisR MP VM AW Ours
0.047 8.270 14.048 3.208 3.676 0.102 26.892 39.141
0.035 4.375 18.669 2.562 0.906 0.094 15.648 26.608
0.896 139.678 78.236 46.926 8.812 4.547 42.544 54.409

NMC [Chen and Zhang 2021] to assess the sharpness of the repaired
mesh and its ability to preserve sharp features.

Qualitative comparisons are presented in Fig. 7, with correspond-
ing quantitative metrics summarized in Table 2 and computational
time provided in Table 3. In the first two rows of Fig. 7, defects such
as non-manifold vertices (highlighted in purple), narrow gaps (bounded
by green curves), and self-intersections (in red) near feature lines
remain unrepaired by methods like TW, MP, and VM. Although
other methods manage to address these imperfections, they fail to
preserve the original features accurately. Additionally, some models
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(a) Input (b) TW (c) MP (d) AW (e) Ours
Fig. 8. Comparison with contemporary techniques on organic and CADmodels consisting of disordered triangles, which result in multiple defects, demonstrates
the efficacy of our method in mesh repair.
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Fig. 9. Comparison with state-of-the-art methods on an imperfect mesh
with a missing feature line shows that our method effectively recovers the
feature line and fills the gap.

in the Thingi10K dataset are fragmented into multiple discrete trian-
gles, a defect that neither MF nor BR can process effectively. In cases
where the imperfect models contain isolated small components, only

TW and our method successfully handle these challenges, as shown
in the third row of Fig. 7.

To assess the robustness of our methodology, 20% of the triangles
within a triangle mesh were randomly selected and deliberately
fragmented into several smaller discrete triangles. Subsequently,
these fragments were subjected to rotations around their normal
vectors at the barycenters by a random angle, intentionally inducing
various defects such as self-intersections, folded faces, and gaps, as
depicted in Fig. 8(a). In Fig. 8, we conduct a comparative analysis of
our approach with alternative methods capable of generating output
meshes for visualization. TW was unable to produce the expected
meshes, whereas MP successfully generated meshes but introduced
duplicate triangles, clearly observable as black regions in the figure.
AW generated high-quality triangulations; however, it was unable
to maintain sharp geometric features.
Furthermore, these methodologies were evaluated on an imper-

fect mesh characterized by a missing feature line and surrounding
open boundaries, as illustrated in Fig. 9. Among all the methods,
ours was uniquely capable of recovering the sharp feature.

4.5 Ablation Study
Wrap surface vs. Poisson surface. In the first stage of our algorithm,
we utilize a manifold wrap surface as a mediating agent for the im-
perfect mesh. However, the Poisson surface, as proposed in [Xu et al.
2022], is another commonly used proxy. To evaluate the differences,
we implemented the Poisson surface as an alternative proxy and con-
ducted comparisons with the wrap surface while keeping all other
experimental settings consistent. Since the Poisson surface requires
consistent normals as input, we first reorient all faces coherently
to ensure fairness in comparison. Subsequently, 10K points were
sampled on the mesh surface to reconstruct the Poisson surface.
However, due to the Poisson surface being constructed based on the
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Fig. 8. Comparison with contemporary techniques on organic and CADmodels consisting of disordered triangles, which result in multiple defects, demonstrates
the efficacy of our method in mesh repair.

value of 𝜇 could cause considerable drifting of points from the im-
perfect mesh, leading to a misalignment with the original geometry.

In contrast, a higher value could excessively constrain point ad-
justments, thus failing to adequately maintain sharp features and
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Fig. 9. Comparison with state-of-the-art methods on an imperfect mesh
with a missing feature line shows that our method effectively recovers the
feature line and fills the gap.
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gles, a defect that neither MF nor BR can process effectively. In cases
where the imperfect models contain isolated small components, only
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in the third row of Fig. 7.
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fragmented into several smaller discrete triangles. Subsequently,
these fragments were subjected to rotations around their normal
vectors at the barycenters by a random angle, intentionally inducing
various defects such as self-intersections, folded faces, and gaps, as
depicted in Fig. 8(a). In Fig. 8, we conduct a comparative analysis of
our approach with alternative methods capable of generating output
meshes for visualization. TW was unable to produce the expected
meshes, whereas MP successfully generated meshes but introduced
duplicate triangles, clearly observable as black regions in the figure.
AW generated high-quality triangulations; however, it was unable
to maintain sharp geometric features.
Furthermore, these methodologies were evaluated on an imper-

fect mesh characterized by a missing feature line and surrounding
open boundaries, as illustrated in Fig. 9. Among all the methods,
ours was uniquely capable of recovering the sharp feature.

4.5 Ablation Study
Wrap surface vs. Poisson surface. In the first stage of our algorithm,
we utilize a manifold wrap surface as a mediating agent for the im-
perfect mesh. However, the Poisson surface, as proposed in [Xu et al.
2022], is another commonly used proxy. To evaluate the differences,
we implemented the Poisson surface as an alternative proxy and con-
ducted comparisons with the wrap surface while keeping all other
experimental settings consistent. Since the Poisson surface requires
consistent normals as input, we first reorient all faces coherently
to ensure fairness in comparison. Subsequently, 10K points were
sampled on the mesh surface to reconstruct the Poisson surface.
However, due to the Poisson surface being constructed based on the
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Fig. 9. Comparison with state-of-the-art methods on an imperfect mesh
with a missing feature line shows that our method effectively recovers the
feature line and fills the gap.

intricate details. This equilibrium is illustrated in Fig. 12, which
elucidates the trade-offs arising from varying values of 𝜇.

5 Limitations
Nonetheless, it is essential to recognize that our methodology does
have certain limitations:
(1) As depicted in Fig. 13, the present implementation exhibits in-

efficiencies, particularly when the number of sample points
increases.

(2) The proposed RPD strategy, while simple and effective in many
cases, may fail when the number of sampled points is too small.
In such situations, the dual structure of the RPD struggles to
accurately capture feature lines, especially when two feature
lines are in close proximity.

(3) Our method is currently limited in its ability to handle meshes
with large holes or near-zero volumes. Addressing such cases
remains an open challenge for future work.

6 Conclusion
In this paper, we propose a unified methodology for repairing de-
fective polygonal meshes while preserving geometric features. Our
algorithm operates on a pair of objects—the original surface and a
wrap surface—thereby decoupling the challenges of edge connectiv-
ity repair and point relocation during the restoration process.
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(a) Input (b) Poisson surface (c) Wrap surface
Fig. 10. Ablation study on proxy surfaces: The input imperfect mesh ex-
hibits various defects, including self-intersections, duplicate facets, open
boundaries, and non-manifold vertices. While our method effectively re-
pairs all these issues, the Poisson surface-based approach fails to address
self-intersections and open boundaries. In the last two columns, the top row
shows the proxy surfaces, the middle row showcases the repaired meshes,
and the bottom row provides the slice viewer of the repaired meshes for
detailed comparison.
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entire set of sampled points, including those from internal struc-
tures, it may result in the formation of holes or self-intersections,
as illustrated in Fig. 10.

Influence of Parameters. The wrap distance 𝜖 governs the proximity
between the wrap surface and the initial mesh, and it determines the
granularity of detail captured. Within our algorithm, both Voronoi
and power diagrams are derived based on the wrap surface, thereby
its level of detail has a direct impact on the accuracy and feature
retention in the repaired surface. As 𝜖 increases, there may be a

(a) 𝜇 = 0.001 (b) 𝜇 = 0.01 (c) 𝜇 = 1.0
Fig. 12. Ablation study on the parameter 𝜇: A smaller value may cause the
points to drift away from the imperfect mesh, whereas a larger value might
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reduction in the inherent details of the original mesh in the repaired
configuration, as depicted in Fig. 11. Consequently, we assign a
lower default value of 1/3000 to 𝜖 .
Within our algorithm, the parameter 𝜇 in Eq. (1) is pivotal in

regulating point movements towards potential feature lines, thereby
ensuring geometric integrity throughout the repair process. A lower
value of 𝜇 could cause considerable drifting of points from the im-
perfect mesh, leading to a misalignment with the original geometry.
In contrast, a higher value could excessively constrain point ad-
justments, thus failing to adequately maintain sharp features and
intricate details. This equilibrium is illustrated in Fig. 12, which
elucidates the trade-offs arising from varying values of 𝜇.

5 LIMITATIONS
Nonetheless, it is essential to recognize that our methodology does
have certain limitations:
(1) As depicted in Fig. 13, the present implementation exhibits in-

efficiencies, particularly when the number of sample points
increases.
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self-intersections and open boundaries. In the last two columns, the top row
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and the bottom row provides the slice viewer of the repaired meshes for
detailed comparison.
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ensuring geometric integrity throughout the repair process. A lower
value of 𝜇 could cause considerable drifting of points from the im-
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Fig. 11. Ablation study on the parameter 𝜖 : A larger value may eliminate
the intrinsic details of the original mesh.

We employ a QEM-inspired technique to define a geometry-aware
point-shifting strategy. Points distant from feature lines or corners
remain stationary, while those near these features shift toward po-
tential feature lines or corners. By using the squared displacement
length as the weight in the final power diagram, our method con-
sistently generates a high-quality triangle mesh as the repaired
result.
Future works include three key directions: (1) enhancing run-

time performance through parallel processing, (2) improving the
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hibits various defects, including self-intersections, duplicate facets, open
boundaries, and non-manifold vertices. While our method effectively re-
pairs all these issues, the Poisson surface-based approach fails to address
self-intersections and open boundaries. In the last two columns, the top row
shows the proxy surfaces, the middle row showcases the repaired meshes,
and the bottom row provides the slice viewer of the repaired meshes for
detailed comparison.
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reduction in the inherent details of the original mesh in the repaired
configuration, as depicted in Fig. 11. Consequently, we assign a
lower default value of 1/3000 to 𝜖 .
Within our algorithm, the parameter 𝜇 in Eq. (1) is pivotal in

regulating point movements towards potential feature lines, thereby
ensuring geometric integrity throughout the repair process. A lower
value of 𝜇 could cause considerable drifting of points from the im-
perfect mesh, leading to a misalignment with the original geometry.
In contrast, a higher value could excessively constrain point ad-
justments, thus failing to adequately maintain sharp features and
intricate details. This equilibrium is illustrated in Fig. 12, which
elucidates the trade-offs arising from varying values of 𝜇.
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Nonetheless, it is essential to recognize that our methodology does
have certain limitations:
(1) As depicted in Fig. 13, the present implementation exhibits in-

efficiencies, particularly when the number of sample points
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Fig. 12. Ablation study on the parameter 𝜇: A smaller value may cause the
points to drift away from the imperfect mesh, whereas a larger value might
fail to preserve sharp features.
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reduction in the inherent details of the original mesh in the repaired
configuration, as depicted in Fig. 11. Consequently, we assign a
lower default value of 1/3000 to 𝜖 .
Within our algorithm, the parameter 𝜇 in Eq. (1) is pivotal in

regulating point movements towards potential feature lines, thereby
ensuring geometric integrity throughout the repair process. A lower
value of 𝜇 could cause considerable drifting of points from the im-
perfect mesh, leading to a misalignment with the original geometry.
In contrast, a higher value could excessively constrain point ad-
justments, thus failing to adequately maintain sharp features and
intricate details. This equilibrium is illustrated in Fig. 12, which
elucidates the trade-offs arising from varying values of 𝜇.

5 LIMITATIONS
Nonetheless, it is essential to recognize that our methodology does
have certain limitations:
(1) As depicted in Fig. 13, the present implementation exhibits in-
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Fig. 13. The time consumption for each stage of our algorithm applied to
an imperfect model with varying numbers of sample points.

RPD strategy to address sparse sampling scenarios, and (3) conduct-
ing comprehensive testing on highly complex defective models to
further strengthen robustness.
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