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Abstract

In recent years, 3D shape analysis has emerged as a crucial field with applications in various domains, such
as multimedia processing, computer graphics, computer vision, and robotics. The ability to understand and
interpret 3D shapes is fundamental for tasks like 3D shape segmentation, points of interest detection, shape
retrieval, recognition, and generation. However, the complexity of 3D mesh models is a significant barrier
that stops the topic from enhancing. Thus, we propose a novel 3D shape analysis framework in this paper
by multi-modal contrastive learning techniques. Our framework makes use of the original mesh data and the
projected images from various points of view of the mesh model. Those two modals contribute to providing
more precise features with the help of our within-modal and cross-modal losses, which respectively calculate
the distances of feature vectors within the mesh model and between feature vectors of mesh and image. Our
framework is tested on downstream tasks, including 3D shape segmentation and points of interest detection,
and outperforms most state-of-the-art methods on public datasets.
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1. Introduction1

3D shape analysis has become a crucial research area with far-reaching applications in diverse fields2

in recent years, including multimedia processing, computer graphics, computer vision, virtual reality, and3

robotics. Understanding and extracting meaningful information from 3D shapes are fundamental tasks that4

underpin various applications, such as shape retrieval, recognition, generation, or even industrial applications5

such as Zhuang et al. (2025); Liu et al. (2022). However, the inherent complexity and high-dimensional6

nature of 3D shapes present significant challenges for traditional analysis methods, demanding innovative7

and effective approaches to tackle these complexities.8

Most existing 3D shape analysis methods heavily depend on the geometric similarity between faces.9

Therefore, extracting robust and effective geometric features for each face is the key to further improv-10

ing the performance of 3D shape analysis frameworks. Earlier methods directly employ existing 3D shape11

feature descriptors, such as Shape Diameter Functions Shapira et al. (2008) (SDF), Average Geodesic Dis-12

tance Shapira et al. (2010) (AGD), and Gaussian Curvature Gal and Cohen-Or (2006) (GC) to describe13

the geometric feature of each face. However, one single feature descriptor can only describe the features of14

faces in one aspect, which greatly prevents the performance of 3D shape analysis algorithms from further15

improvement. Hence, later methods Kalogerakis et al. (2010); Guo et al. (2015); Shu et al. (2016) tend to16

combine multiple feature descriptors together and hope to achieve better performance than using one only.17

With the fast development of machine learning techniques, more and more 3D shape analysis methods18

utilize machine learning approaches, especially deep learning ways, to obtain more reliable geometric features.19

Those methods can be classified into two major categories. The first category of methods mainly exploits a20

deep neural network to map the existing low-level geometric features to high-level ones, such as Guo et al.21
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Figure 1: Taking 3D shape segmentation as an example, by adding multi-modal contrastive learning, our method trains an
encoder which can make use of feature vectors extracted from the original 3D shapes (shown on the left) and corresponding
projected 2D images from various angles (shown on the right). The labels are represented by different colors in this figure. By
making feature vectors of the same label closer, and those of different labels farther away, the encoder is trained to be capable
of learning more effective features used in downstream analysis tasks.

(2015); Shu et al. (2024a,b, 2025a). Usually, this kind of method depends on a large amount of high-quality22

labeled training 3D shapes to ensure satisfactory results. However, manually labeling each face of 3D shapes23

is widely deemed an extremely tedious and expensive task. The other category of methods Wang et al.24

(2013); Xie et al. (2015); Kalogerakis et al. (2017) try to project 3D shapes into several 2D views and25

convert the task of 3D shape analysis into 2D image analysis. Benefiting from transferring prior knowledge26

learning from existing 2D image datasets, this category of methods shows their superior performance over27

other approaches. However, it suffers from the occlusions occurring during projections, which stopped its28

performance from further improvement.29

In this paper, we propose a novel 3D shape analysis method, which builds the contrastive learning30

framework between the high-level geometric features and the features of projected 2D views, to fully take31

advantage of the above two major categories of methods. Taking 3D shape segmentation as an example, we32

present the motivation of our framework in Figure 1. Benefiting from contrastive learning, our framework33

directly learns more robust and effective features usable in downstream tasks, including 3D shape segmen-34

tation and points of interest detection, which shows its great advantage over existing methods on public35

datasets.36

Our contributions are two-fold:37

• We propose a novel 3D shape analysis framework by using the contrastive learning technique. With38

our novel learning framework, we can directly learn robust and effective features which can be applied39

to downstream tasks and obtain satisfactory results.40

• Different from existing methods, our framework utilizes the existing hand-crafted 3D geometric features41

and prior knowledge transferred from the 2D image domain together, so that the shortage of the two42

categories of existing methods can remedy each other and better performance is achieved than using43

any one of them only.44

The remaining parts of this paper are organized as follows. First, we introduce related work in Section 2.45

Second, we describe the details of our framework in Section 3. Third, Section 4 shows the performance of46

our framework on downstream tasks and compares it to state-of-the-art methods on public benchmarks.47

Fourth, the limitations and future work of our framework are explained in Section 5. Finally, we conclude48

our paper in Section 6.49
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2. Related Work50

In the field of multimedia processing, one of the most important research topics is shape analysis. In the51

following, we mainly review the methods of 3D shape analysis based on surface meshes.52

2.1. Contrastive learning53

As a large number of labeled meshes are needed for supervised methods to train algorithms, people tend54

to use unsupervised methods which do not need the help of tons of data. Contrastive learning, which is a55

self-supervised approach, needs to learn feature representation from data and use it in downstream tasks. In56

contrastive learning methods, the representation learning model is built by constructing similar and dissim-57

ilar instances and the process of pushing similar instances closer, while pulling dissimilar instances farther58

away in the projection space. Contrastive learning has been widely used in the field of computer vision.59

InstDisc Wu et al. (2018) uses a memory bank to form a dictionary, saving all features of images originated60

from data augmentation, which serves as the positive samples. All other images and their augmented version61

serve as negative samples. CMC Tian et al. (2019) is the first to introduce contrastive learning in multi-view62

models, which uses four types of images, including original image, depth information, surface normal, and63

segmentation image, to describe the same scene and form positive samples for each other, and all others are64

negative. MoCo He et al. (2019) introduces a new concept, momentum encoder, into contrastive learning65

and uses a queue to take the place of a memory bank in order to solve the problem of storage when the66

feature descriptor of images is to form a huge dictionary. SimCLR Chen et al. (2020b) forms a widely-used67

pipeline which uses two augmented data as positive samples and an encoder whose weights are shared to68

extract feature vectors. Projection heads using MLP layers are also used to project feature vectors into69

another feature space. BYOL Grill et al. (2020) starts a new stage of contrastive learning, which only uses70

positive samples to train the model, adding another projection head to prevent the model from collapsing.71

2.2. 3D shape segmentation72

Early 3D shape segmentation approaches focus on utilizing hand-crafted feature descriptors to segment73

3D shapes. Naturally, the faces with the same label in a 3D shape should have similar geometric features.74

Thus, many researchers have designed various feature descriptors to map all faces into feature space and75

then applied clustering algorithms to divide them into several classes for segmentation. AGD, calculated76

by the average geodesic distance between each vertex and all other vertices, represents the global position77

information of 3D shapes. SDF measures the diameter of the local shape of the face to identify the thin78

part and the fat part of the 3D shape. GC describes the bending degree of each vertex in the 3D shape.79

Extensive results show that utilizing these feature descriptors and others obtain satisfactory results in 3D80

shape segmentation. To further improve the performance of segmentation, Huang et al. (2011); Sidi et al.81

(2011); Hu et al. (2012); Kim et al. (2013); Kaick et al. (2014) combine multiple feature descriptors to extract82

the feature vectors of 3D shapes from multiple aspects.83

Benefiting from the rapid development of 3D shape repositories and machine learning techniques, es-84

pecially deep learning, a growing number of researchers focus on supervised learning-based segmentation85

methods. Compared with the traditional and unsupervised methods, the supervised learning-based methods86

can learn the mapping relationship from feature vectors to labels through prior knowledge, so that they often87

achieve superior performance.88

The first supervised learning-based method introduced in 3D shape segmentation is the work of Kaloger-89

akis et al. (2010). They design an objective function with learnable parameters based on the CRF model.90

The objective function is optimized by utilizing the manually labeled shapes. Similar to Kalogerakis et al.91

(2010), Kaick et al. (2014) propose a novel shape segmentation approach, which utilizes the knowledge92

by analyzing geometric similarity between the matched shapes. Some researchers use supervised learning93

methods on multiple geometric feature descriptors to segment shapes. Xie et al. (2014) propose a fast seg-94

mentation method on the mesh by using Extreme Learning Machine. Guo et al. (2015) pioneer the deep95

convolution neural networks in 3D shape segmentation by transforming multiple geometric feature descrip-96

tors into a two-dimensional matrix. Liu et al. (2021) use the Point Context Encoding method, which enables97

the method to capture semantic contexts of a point cloud and adaptively highlight intermediate feature98
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maps. Chen et al. (2021) use a gated graph attention network to solve the problem of treating different99

neighbor points equally in previous methods. Besides feature-based methods, view-based methods were also100

applied for segmentation by building up the connection between 3D shapes and their 2D projection collec-101

tions. Wang et al. (2013) label each projection through the knowledge learned from the labeled projections102

and then projects back to the labels on the mesh. Kalogerakis et al. (2017) apply the image-based Fully103

Convolutional Network to label the projections and obtain excellent segmentation results. Le et al. (2017)104

suggest a method that treats multiple 2D projections of the 3D shape as the format of sequence and employs105

the RNN for segmentation. MeshWalker Lahav and Tal (2020) also uses RNN to segment 3D shapes, but106

their sequences were obtained by random walking on the mesh surface.107

2.3. Points of interest detection108

Points of interest (POIs), defined as distinctive points on the surface of 3D shapes, play a crucial role109

in 3D shape analysis tasks. Detecting these POIs serves various purposes, such as facilitating shape-based110

searches across distinct regions Shilane and Funkhouser (2007) or selecting the most informative views of a111

given 3D model Leifman et al. (2012).112

Initially, researchers identified 3D POIs by analyzing multiple 2D projected views, such as Guy and113

Medioni (1997); Yee et al. (2005); Mantiuk et al. (2003). However, in the past decade, the focus has shifted114

toward directly detecting POIs on the input polygonal surface. This involves assessing the saliency based115

on geometric properties in the local neighborhood. Depending on the size of this neighborhood, existing116

methods can be classified into two categories.117

The first category consists of algorithms that measure saliency on a local scale. For instance, Koch118

and Ullman (1987) proposed that salient regions should exhibit distinctiveness from their immediate sur-119

roundings. Lee et al. (2005) defined scale-dependent saliency using a center-surround operator on Gaussian-120

weighted mean curvatures. Gal and Cohen-Or (2006) introduced salient geometric features that represent the121

geometry of local surface regions by combining low-level features into a high-level representation. Spectral122

analysis techniques Hou and Zhang (2007) have also been explored, involving the transformation of spectral123

residuals from the spectral domain back to the spatial domain for this purpose. The second category of124

methods Cheng et al. (2015); Duan et al. (2011) approaches saliency assessment differently. These methods125

often require evaluating global contrast differences and spatial coherence. The central idea is to establish a126

measurement that highlights the visually striking regions on a global scale.127

From the above, it is evident that previous approaches to 3D shape analysis faced certain challenges.128

Some approaches involved utilizing feature descriptors to analyze 3D shapes, but this heavily relied on129

manually annotated data for each downstream task. Consequently, obtaining satisfactory results often130

became challenging when high-quality labeled data was unavailable. Another set of methods Shu et al.131

(2025b) attempted to address 3D shape analysis by converting 3D shapes into 2D images through projections132

and then applying image analysis techniques. However, relying solely on projections made it difficult to133

overcome occlusion issues, significantly impacting the efficiency and effectiveness of the analysis. To address134

these limitations, we propose a novel approach that leverages multi-modal contrastive learning. By effectively135

combining 3D shapes and 2D projected images, we exploit the correspondence and similarity between the136

two modalities to extract more accurate and effective feature vectors. This approach aims to enhance various137

downstream tasks related to 3D shape analysis, offering improved performance and better outcomes.138

3. Our framework139

In this section, we will introduce the details of our method. As shown in Figure 2, our framework consists140

of two branches. The first is the 3D mesh branch, which uses the original model to extract feature vectors,141

and the other is the image branch, which projects the 3D mesh to a series of 2D images in different angles142

and generates feature vectors via pre-trained feature extractors. Finally, we conduct contrastive learning143

between feature vectors of images and feature vectors of 3D meshes in order to train an encoder for 3D144

meshes and use the encoder to analyze shapes in the testing phase.145
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Figure 2: Given a 3D mesh model, we are working on two branches. The upper part, the mesh branch, extracts the feature
vectors from the original mesh and projects them into the feature space via the projection head. The lower part, the image
branch, gets the projected images and applies data augmentation to them. By extracting feature vectors from the pre-trained
encoder, our method projects them into feature space through projection heads. Feature vectors are compared using within
and cross-modal loss in the feature space, and therefore, our approach trains the encoder of the mesh branch aiming at making
similar vectors closer and different ones farther away.

3.1. Preliminaries146

Notations. In each epoch, we have several 3D models M = {M1,M2, . . . . . . ,Mn}, where Mi = {V,E, F}147

representing the set of vertices, edges, and faces of the mesh model, each of which is projected into 2D images148

Ii = {I1i , I2i , . . . . . . , Imi } from several different view-points. We are supposed to train a feature extractor for149

3D models fm(·), with the help of image feature extractor fi(·). gm(·) and gi(·) are projection heads for150

mesh models and images respectively.151

Preliminaries related to contrastive learning. The main goal of contrastive learning is to train an encoder152

f which can extract the representation, that is, the feature vectors of input samples, and can be used to153

adapt to other downstream tasks. In order to train the encoder, positive and negative pairs are needed to154

calculate the contrastive loss. Specifically, positive pairs have similar features, for example, selected from the155

same category, or generated from the same image, whereas negative pairs are typically different in shapes,156

colors, and other ways, for example, different types of images. We train the network to differentiate feature157

vectors of negative pairs and gather those of positive pairs using contrastive loss.158

However, the feature vectors generated from the encoder cannot be directly used in contrastive losses, for159

the reason that contrastive learning is not always suitable for downstream tasks. Therefore, in the training160

phase, we add another network called projection head g consisting of MLP with one hidden layer, which161
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Figure 3: A simplified pipeline of the contrastive learning method which is used in the segmentation method. M denotes the
original mesh model and I denotes the image projected from M . fM and fI are encoders which extract feature vectors from
mesh and image respectively. gM and gI are projection heads constructed with MLPs used to project feature vectors into
feature spaces where we compare and calculate losses.

maps the vectors to another feature space to calculate the contrastive loss. Projection heads are usually162

simple networks consisting of MLP layers.163

After training the encoder, the projection head, as well as positive and negative pairs, are neglected, and164

a softmax layer is added to predict the downstream task labels. Also, for most methods, negative pairs are165

not used for the great difference in the number of positive and negative pairs. Figure 3 shows the simplified166

pipeline of contrastive learning used in our method.167

In the following, we introduce the contrastive learning settings used to conduct 3D mesh analyzing tasks.168

Section 3.2 and Section 3.3 discuss the mesh and image branches, respectively. Section 3.4 concludes the169

overall algorithm in total.170

3.2. Mesh branch171

Inspired by contrastive learning algorithms used on images He et al. (2020); Chen et al. (2020a), we train172

the encoder based on the idea that the feature vectors of faces with the same label should be closer in the173

feature space, and at the same time, those of faces with different labels should be separated. Therefore, we174

treat faces with the same labels as positive pairs and minimize the contrastive loss between them.175

Given a mesh model Mi = {V,E, F}, we use the feature extractor fm(·) to map the faces in Mi into176

feature vectors z. Then we project the feature vectors into another feature space where the contrastive177

loss is applied by using the projection head gm(·). We denote the result z̃ where z̃ = gm(fm(Mi)). The178

contrastive loss function between faces in the 3D shape is:179

Lmesh = − 1

N

N∑
i=1

1

Nyi

N∑
j=1

[yi = yj ] log

(
eij∑N
k=1 eik

)
, (1)

where N is the number of total faces in the 3D mesh model, Nyi is the number of faces whose label equals180

the label of face i. eij = exp(fi · fj/τ) where fi and fj are feature vectors of face i and j respectively and τ181

is the temperature parameter.182

Furthermore, to extract rich geometric feature information on 3D shapes, we use multiple feature descrip-183

tors to calculate the feature vector on each face as input. Instead of stacking more feature descriptors, we184

only select five feature descriptors that perform well in previous studies. These feature descriptors include185

SDF, GC, AGD, Wavelet Kernel Signature Aubry et al. (2011) (WKS), and Scale Invariant Heat Kernel186

Signatures Bronstein and Kokkinos (2010) (SIHKS). SDF, GC, and AGD are used to measure the inherent187

geometric features of 3D shapes, whereas WKS and SIHKS are feature descriptors based on spectral shape188

analysis. SDF, GC, and AGD are one-dimensional, while WKS and SIHKS are 100-and- 19-dimensional189

respectively. These vectors are concatenated into a 122-dimensional feature vector.190
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Figure 4: Architectures of ResNet. It is naturally divided into 4 parts, namely conv2 x, conv3 x, conv4 x, and conv5 x. In our
method, we take the middle two parts and use them as the encoder of images in order to extract the feature vectors.

3.3. Image branch191

In order to generate more positive pairs for each face and improve the performance, we make use of the192

images projected from 3D shapes and build an image branch to extract features and exploit them in our193

algorithm.194

We place a set of cameras at different angles and positions relative to the 3D model. The details about195

the setting of cameras can be found in section 4.2. Each camera can form a 2D image containing rendering196

information from the mesh and also depth information. Although there might be occlusion, we can capture197

information for all faces to the most extent. Labels are also allocated to the images in the projection process.198

For every single pixel in the image, if only one face is related, we directly take the label of the face as its199

label. Otherwise, if more than one face is included in the pixel, we make votes to decide the labels referring200

to the area of each label.201

Also, as each image contains different parts of the original mesh, we use each projected image to be202

contrastive samples against 3D mesh models instead of calculating contrastive loss among images. Data203

augmentation is also applied in order to learn more features from images, such as random crop, resize,204
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Algorithm 1 : 3D Shape Analysis via Contrastive Learning

Inputs: Training 3D shapes and human-assigned labels for all faces
Outputs: Predicted label for each face on test 3D shapes
Training process:
Mesh branch:
Step 1: Compute features for each face in training 3D shapes using feature descriptors, including AGD,
SDF, GC, SIHKS, and WKS.Concatenate those features into high-dimensional vectors;
Step 2: Project the feature vectors to the feature space via fm and gm and get z̃;
Image branch:
Step 1: Obtain 2D images using the projection method through different angles;
Step 2: Extract feature vectors from the augmented images, project them into feature space via gi, and get
hi for each image;
Step 3: Train our network and minimize the contrastive loss between h and z̃;
Testing process:
Step 1: Compute feature vectors for each face in testing shapes;
Step 2: Use the trained encoder fm to extract feature vectors from the input feature vectors;
Step 3: Add different layers to meet the requirements of each downstream task.

rotate, Gaussian noise, and color distortion. Those augmentation methods are randomly selected and205

applied to each image. To extract feature vectors, we opt for the well-known ResNet He et al. (2015) which206

is commonly used and also effective as the encoder for images (fI). As shown in Figure 4, ResNet is divided207

into 4 parts. The first part of which extracts typically lower-level features such as colors, while the last208

part is mainly designed to match the needs of downstream tasks. The middle two parts are chosen as the209

encoder for images in our method. Like the mesh branch, we also use projection head gi to project the210

feature vectors to the feature space mentioned above and calculate contrastive loss between each image and211

the original mesh.212

For each image, we use the same weight due to their equal importance, that is, the total contrastive loss213

between mesh and images is:214

Limage = − 1

N

N∑
i=1

1

I

I∑
m=1

1

Mm
yi

M∑
j=1

[yi = ymi ] log

(
eimj∑M
k=1 eimk

)
, (2)

where I denotes the number of images projected from the mesh, M denotes the number of pixels in each215

image, and Mm
yi

denotes the number of pixels in image m whose label is equal to the label of face i.216

Finally, we use the combination of the two contrastive losses mentioned above, representing mesh and217

image respectively, as the resultant loss function, which is: L = Lmesh + Limage.218

3.4. Algorithm219

Our algorithm is trained and tested on each category of 3D shapes, which can be summarized as Algo-220

rithm 1.221

Throughout the entire contrastive learning training process, both the encoder and projection head in222

the two branches participate in training. It should be noted that we fine-tune the ResNet encoder after223

initializing it with pretrained weights instead of freezing it. This design ensures that all parts of the network,224

even those pretrained on other datasets, are fully optimized to capture the unique characteristics of our 3D225

shape analysis task.226

3.5. Downstream tasks227

In this section, we primarily focus on the specific applications of our framework in downstream tasks of 3D228

shape segmentation and 3D feature point detection. Specifically, by fully leveraging cross-modal contrastive229
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learning techniques, we design a two-stage processing to apply the network architecture to downstream230

tasks.231

3D shape segmentation. In the context of 3D shape segmentation, we simplify it as a process of classifying232

each face of the 3D shape. Therefore, in our 3D shape segmentation task, we first utilize the existing233

122-dimensional feature vector as input to our proposed framework. In order to obtain more effective234

features for each face of the 3D shape, we train the network using two complementary loss functions: an235

intra-modal loss and a cross-modal loss. Subsequently, these refined features are treated as input to a236

classification network containing two hidden layers, each having 32 neurons and one softmax layer for the237

final prediction of segmentation labels. Finally, we apply graph-cut Boykov et al. (2001) to smooth the238

boundary and enhance the effectiveness of 3D shape segmentation results. Graph-cut has three core steps239

in 3D mesh segmentation: First, each face is treated as a graph node, and edges are constructed between240

nodes based on adjacency relationships. The unary cost for each node is derived from the softmax outputs241

of our classification network, representing the cost or uncertainty of assigning a particular label to that242

face. Second, pairwise cost is generated by computing geometric differences (e.g., discrepancies in normal243

vectors or spatial proximity) between adjacent faces, leveraging geometric consistency to optimize label244

propagation. Lastly, the overall energy function, combining the unary and pairwise costs, is then minimized245

using a minimum cut/maximum flow algorithm. This process yields a segmentation that balances data246

fidelity with boundary smoothness, resulting in more coherent and visually pleasing segmentation outcomes.247

Our experiments show that integrating this graph cut step improves segmentation accuracy by approximately248

3-4 percentage points on average.249

3D points of interest detection. Similar to 3D shape segmentation, we treat 3D point of interest extraction250

as a binary classification problem for each vertex, determining whether it is a point of interest or not.251

Therefore, we use similar methods to obtain feature vectors for each vertex. By utilizing these feature252

vectors, we calculate the probability distribution of each vertex being classified as a point of interest. Finally,253

employing a method similar to Shu et al. (2023), we obtain the predictions for the points of interest based254

on this probability distribution and use the Density Peak Clustering method to sort out POIs.255

After finishing contrastive learning training, the algorithm can be adapted to various downstream tasks256

by incorporating additional classification layers. Notably, the network employs an extra supervised training257

phase to facilitate this adaptation. In our experiments, we partitioned the 3D model dataset into training258

and testing sets with a 6:4 ratio, maintaining consistency with prior methodologies.259

4. Experiments260

In this section, we present the experimental results of our framework and compare them with current261

state-of-the-art approaches. Then, we set up several ablation experiments to verify the rationality of our262

approach.263

4.1. Dataset264

To validate the effectiveness of our framework in handling different downstream tasks, we conducted265

extensive experiments on a substantial amount of publicly available datasets. For 3D shape segmentation266

tasks, we employed datasets such as PSB, COSEG, and Human Body. For 3D point of interest detection267

tasks, we used datasets including SHREC 2007 and 2011.268

3D shape segmentation. In 3D shape segmentation tasks, we employ the Princeton Segmentation Bench-269

mark Chen et al. (2009) (PSB), the COSEG benchmark Wang et al. (2012), and the Human Body Dataset270

proposed by Maron et al. (2017) in the experiments to evaluate our algorithm. PSB and COSEG are the271

two most popular datasets for benchmarking 3D manifold shape segmentation algorithms. The PSB dataset272

contains 19 categories, with 20 models for each category. We remove the three categories of bust, bearing,273

and mech because the models in these categories lack consistent semantic labels. The small dataset of the274

COSEG contains shapes for eight classes, and the large dataset consists of three classes. The Human Body275

Dataset is a newly constructed and recently popular dataset formed by 381 training models and 18 testing276

models. The division of the training and testing sets for PSB is referenced from Guo et al. (2015). We take277

12 models as the training sets for each category and the rest as the validation sets.278
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Table 1: The accuracy comparison of our method against three supervised methods, including
ShapePFCN Kalogerakis et al. (2017), MeshCNN Hanocka et al. (2019), and MeshWalker Lahav
and Tal (2020) on the PSB dataset.

Category ShapePFCN MeshCNN MeshWalker Ours

Cup 93.70% 95.86% 99.54% 98.52%
Table 99.30% 96.78% 99.33% 99.10%
Teddy 96.50% 84.29% 95.57% 97.25%
Bird 86.30% 68.09% 92.76% 90.61%
Hand 88.70% 68.83% 83.31% 86.67%
Fish 95.90% 89.05% 94.58% 96.09%

Human 93.80% 74.76% 87.02% 93.88%
Glasses 96.30% 93.94% 96.11% 96.67%
Airplane 92.50% 84.36% 96.20% 96.81%

Ant 98.90% 91.83% 97.36% 98.73%
Chair 98.10% 84.75% 97.61% 97.95%

Octopus 98.10% 98.21% 97.86% 98.56%
Plier 95.70% 83.69% 92.24% 95.79%

Armadillo 93.30% 50.24% 89.12% 94.01%
Vase 85.70% 68.94% 84.56% 88.12%

FourLeg 89.50% 68.73% 80.93% 90.03%

Average 93.89% 81.40% 92.76% 94.94%

Table 2: The accuracy of segmentation for each category of 3D shapes in the small COSEG dataset compared
with three other methods, including ShapeBoost Kalogerakis et al. (2010), MeshCNN Hanocka et al. (2019), and
ShapePFCN Kalogerakis et al. (2017).

Category ShapeBoost MeshCNN ShapePFCN Ours

Candelabra 85.50% 83.52% 95.40% 96.20%
Chairs 94.80% 92.87% 96.10% 95.84%
Fourleg 92.30% 86.19% 90.40% 92.58%
Goblets 97.00% 92.62% 97.20% 97.72%
Guitars 97.70% 91.34% 98.00% 98.93%
Irons 87.20% 81.26% 88.00% 88.31%
Lamps 76.30% 83.64% 93.00% 90.49%
Vases 86.40% 77.43% 84.80% 88.03%

Average 89.65% 86.11% 92.86% 93.51%

POI detection. In POI detection tasks, we test the ability of our method on the SHREC 2007 and 2011279

datasets, which is an open dataset originally used for 3D shape classification and retrieval. The SHREC280

2007 dataset contains 20 categories of 3D shapes, each with 20 3D shapes, while the SHREC 2011 dataset281

contains 30 categories of shapes. We developed a small visual tool and manually marked POIs for each 3D282

shape in the dataset. 10 shapes are randomly selected from each category as the training set, and the rest283

are as the testing set.284

4.2. Experiment details.285

We implement our algorithm in Python and Matlab. In our network, the initial weights are set to286

variables subject to a Gaussian distribution with a variance of 0.001 and a mean of zero. The optimizer is287

Adam, with a learning rate of 0.001. Our algorithm runs on a single NVIDIA GeForce RTX 3090 GPU.288

With the consumption of shape preprocessing, for each model with 20K-30K faces, our algorithm needs 10289

minutes for training (including contrastive learning and subsequent task-specific training) and 30 seconds290

for evaluation.291

For the projection phase, we employ a total of 26 virtual cameras for each shape. These cameras are292

positioned at various locations, with their distances from the shape’s bounding sphere radius. Initially, we293

randomly determine an azimuth direction and assign the first camera to that position. Along the equator,294

we place an additional 7 virtual cameras at 45-degree intervals. When the elevation angle reaches 45 and295

-45 degrees, we add 16 more virtual cameras at the same azimuth positions as the first 8 cameras. Finally,296

we position the last 2 cameras on the poles. Furthermore, to expand the training dataset, each camera is297

rotated 4 times at 90-degree intervals.298
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Table 3: The accuracy of segmentation on the Human Body Dataset compared with six other methods, including Maron et
al. Maron et al. (2017), DiffusionNet Sharp et al. (2020), Field Convolutions Mitchel et al. (2021), HodgeNet Smirnov and
Solomon (2021), MDGCNN Poulenard and Ovsjanikov (2018) and PFCNN Yang et al. (2018).

Method Accuracy Method Accuracy

Maron et al. 88% DiffusionNet 90.80%
Field Convolutions 92.90% HodgeNet 85.03%

MDGCNN 92.90% PFCNN 85.03%

Ours 93.02%

Ours

GT

Figure 5: The comparison on the PSB dataset between our segmentation result (“Ours” in the image) and the ground truth
(“GT” in the image).

4.3. 3D shape segmentation299

Similar to Guo et al. (2015), we use the following segmentation accuracy metric to evaluate the perfor-300

mance of our approach:301

Accuracy =
∑
i∈T

tiu (li) /
∑
i∈T

ti, (3)

where T is the face set of the testing 3D shapes, ti is the area of the face i, and li is the predicted label of302

face i. u (li) is equal to 1 if the prediction is correct, otherwise, it is 0.303

Tables 1, 2, and 3 compare the accuracy of our method and other approaches on the PSB dataset, the304

small COSEG dataset, and the Human Body dataset, respectively. From the tables, we can see that our305

method obtains an average accuracy of 94.94% on the PSB dataset, 93.51% on the small COSEG dataset, and306

Figure 6: The examples of the 3D shape segmentation results obtained from our method on the PSB dataset.
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Figure 7: The 3D shape segmentation results of our method on the COSEG dataset.

Figure 8: The 3D shape segmentation results of our method on the Human Body dataset.
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Table 4: The AUC Score of our algorithm compared with SOTA algorithms, including Saliency of Large Point Sets
(LS, Shtrom et al. (2013)), Schelling Point (SP, Chen et al. (2012)), Cluster-Based Point Set Saliency (CS, Tasse
et al. (2015)), PCA-Based Saliency (PS, Tasse et al. (2016)), and Mesh Saliency via Spectral Processing (MS, Song
et al. (2014)) on SHREC 2007 Dataset.

Algorithms SH2011 LS SP CS PS MS Ours

Airplane 0.6597 0.6705 0.6609 0.6308 0.6409 0.6160 0.6625
Human 0.6383 0.5893 0.6311 0.5745 0.5921 0.5695 0.6325
Cup – 0.6192 0.5864 0.6122 0.6135 0.5934 0.6379
Glass 0.6018 0.5727 0.6097 0.5225 0.5530 0.5297 0.6351
Ant 0.6468 0.6349 0.6029 0.6056 0.5791 0.5696 0.6391

Octopus 0.6592 0.6237 0.5679 0.5480 0.5726 0.5342 0.6448
Table – 0.6651 0.6162 0.6313 0.6168 0.5802 0.6738
Buste – 0.6260 0.5757 0.6236 0.6352 0.5620 0.6261
Teddy – 0.5641 0.6596 0.5671 0.5682 0.5530 0.7033
Hand – 0.6339 0.5668 0.6060 0.6022 0.5763 0.6341
Plier 0.6182 0.6236 0.6128 0.5997 0.5754 0.5615 0.6165
Fish 0.5902 0.6717 0.6562 0.6651 0.6736 0.6309 0.6039

Four-legged 0.6140 0.6168 0.6056 0.6024 0.6112 0.6005 0.6006
Bird 0.6390 0.6217 0.6169 0.6010 0.5984 0.5627 0.6297
Spring – 0.5545 0.5751 0.5512 0.5339 0.5523 0.6013

Armadillo 0.6859 0.6656 0.6792 0.6560 0.6570 0.5996 0.6825
Chair – 0.6566 0.6492 0.5871 0.5799 0.5505 0.6726

Mechanic – 0.6932 0.6548 0.6964 0.7065 0.5325 0.6924
Bearing – 0.6387 0.6063 0.6472 0.6322 0.4986 0.6517
Vase – 0.6217 0.5540 0.6158 0.6251 0.6058 0.6190

Average – 0.6282 0.6144 0.6072 0.6083 0.5689 0.6419

93.02% on the Human Body dataset, which achieves significantly better performance than other methods.307

Figure 5 shows the comparison between the segmentation results of our method and the ground truth.308

Figure 6, Figure 7, and Figure 8 show some samples of the segmentation results of our method on the PSB,309

COSEG, and Human Body datasets, respectively.310

4.4. Points of interest detection311

In the POI-detection task, we apply the Area Under the ROC Curve (AUC Score) to quantify the312

performances of each method. The Receiver Operating Characteristic (ROC) curve is a plot illustrating the313

performance of a binary classifier for different threshold values. The area under the ROC curve is previously314

widely used to compare saliency models in the 2D case.315

Table 4 shows the AUC Score comparison between our method and some of the state-of-the-art methods,316

including Saliency of Large Point Sets (Shtrom et al. (2013)), Schelling Point (Chen et al. (2012)), Cluster-317

Based Point Set Saliency (Tasse et al. (2015)), PCA-Based Saliency (Tasse et al. (2016)), and Mesh Saliency318

via Spectral Processing (Song et al. (2014)) on SHREC 2007 dataset. From the table, we can conclude319

that our method obtains better performance than other methods on average and on a large proportion of320

categories. Moreover, our visualized result of POI detection on the SHREC 2011 dataset is presented in321

Figure 9.322

4.5. Ablation studies323

The ablation study performed in this study aims to evaluate the impact of different factors on the324

performance of our proposed method. In order to conduct ablation studies and verify the effectiveness325

of our framework, we focus on the downstream task of 3D shape segmentation. More specifically, we326

evaluate the impact of the loss function and the use of pre-trained ResNet models on the segmentation327

accuracy. Regarding the loss function, we compare the segmentation results of our method using different328

loss functions, including no loss function, within-modal loss, cross-modal loss, and a combination of within-329

modal and cross-modal loss. Our results, as shown in Figure 10, evidence that using a combination of330

the two loss functions resulted in higher accuracy compared to using any single loss function. The within-331

modal loss enables the model to find more discriminative features within the same modality, which helps332
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Figure 9: Some of the visualized results of POI detection of our algorithm on the SHREC 2011 dataset. The red balls represent
POIs detected by our method.

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

Human Table Teddy

none within-modal cross-modal within-modal &  cross-modal

Figure 10: Comparison of segmentation results for different combinations of losses. The “none” represents using neither within-
modal nor cross-modal losses, the “within-modal” represents using only within-modal loss while training, the “cross-modal”
represents using only cross-modal loss likewise, and the “within-modal and cross-modal” represents using both losses in the
training process.
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No pretrain Middle two parts Whole ResNet

Figure 11: The comparison of segmentation results among different types of pre-trained encoders of image. The “no pre-train”
stands for not using any pre-trained and using MLPs with randomized parameters in the image encoder, the “middle two
parts” stands for using the middle two parts of ResNet with pre-trained parameters, and the “whole ResNet” stands for using
the whole ResNet. The ResNet is pre-trained using the ImageNet Deng et al. (2009) dataset, and all parameters are fixed in
the training process.

GT No pre-trainMiddle two parts Whole ResNet

Figure 12: Results for ablation studies on ResNet pre-training. “GT” stands for ground truth segmentation. The “Middle Two
parts”, “Whole ResNet”, and “No pre-train” is the same as in Figure 11.
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improve the model’s performance in 3D mesh segmentation tasks. On the other hand, the cross-modal loss333

strengthens the correlation between different modalities, enhancing the model’s multi-angle understanding334

of 3D shapes. This indicates the importance of jointly considering both within-modal and cross-modal335

information in our proposed method. We also conduct an investigation into the effectiveness of pre-training336

ResNet models. In particular, we compare the segmentation results using a pre-trained ResNet model337

with intermediate layers against those obtained without pre-training or with full ResNet pre-training. Our338

results presented in Figure 11 show that utilizing a pre-trained ResNet model with intermediate layers led339

to superior segmentation performance compared to not using pre-training or training on the entire ResNet340

model. Using the intermediate layers of ResNet as the initialization for the image encoder performs better341

than other configurations. The feature representations in the intermediate layers already possess strong342

abstraction capabilities for image processing tasks, making them more suitable for supporting 3D shape343

analysis tasks. The samples of segmentation results in this experiment are shown in Figure 12. This344

highlights the importance of using pre-trained models, especially those with intermediate layers, to achieve345

better segmentation results.346

5. Limitation and future works347

There are a few limitations that our algorithm currently faces. Firstly, feature descriptors need to348

be computed for each face using our algorithm, which requires the 3D shape to be manifold. We plan on349

addressing this by extending our approach to non-manifold shapes in the future. Secondly, the computational350

cost of using our proposed face classification network is relatively high. To mitigate this issue, we will explore351

more efficient network architectures in our future work.352

6. Conclusion353

In this paper, we propose a novel 3D shape analysis framework based on multi-modal contrastive learning354

algorithm. Previous methods usually use a large amount of human-labeled 3D mesh data, which is costly.355

We design within-modal and cross-modal loss in our method and train the encoder, which can effectively356

extract the features on 3D mesh models. The projection from 3D to 2D enables the algorithm to exploit357

the features with the help of ResNet layers and conduct contrastive learning within 3D shapes as well358

as between 3D shapes and 2D projected images. This mechanism synergistically combines the strengths of359

multiple modalities, leading to the extraction of more informative and discriminative features. Experimental360

results on public benchmarks show that our method outperforms other approaches.361
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