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Dynamic lighting conditions pose challenges for capturing well-illuminated facial images, result-
ing in difficulties for effective recognition. Previous enhancement methods have relied on paired
facial datasets with varying brightness levels to improve images quality. However, acquiring
high-quality pairs of facial images under different lighting conditions is quite challenging,
and these approaches often struggle to perform effectively in scenarios with highly complex
lighting. In response to these limitations, this paper introduces a NUL-Face dataset, which
consists of non-uniformly illuminated face images without matching pairs. And we propose an
unsupervised non-uniform illumination face enhancement algorithm based on a physics-guided
Model. Firstly, we perform the model analysis and establish a two-phase iterative enhancement
process, incorporating a consistency constraint on the results. The framework guides low-
quality images toward approximating a target high-quality uniform brightness output through
training. It leverages illumination analysis to iteratively update the images and enhance facial
details. Furthermore, by incorporating constraint terms, our model effectively decouples the
influence of intricate illumination conditions on the images, facilitating their reconstruction
across diverse states. Finally, we employ a discriminative network to ensure the naturalness of
the enhanced results. Experimental results demonstrate the superiority of our proposed method
over existing alternatives, underscoring its effectiveness in tackling complex lighting conditions
and enhancing non-uniformly illuminated face images.

ction
plex lighting factors, capturing facial images at night or in backlit scenes is typically challenged by low

xposed images can also result in low quality and unclear facial details. To improve the image quality [35],
cement methods have been proposed to address this problem.
ses, images tend to be non-uniform in brightness. In practice, controlling illumination is often unfeasible.
ensating for this uneven lighting, achieving satisfactory recognition results becomes impossible [14].
Fig 1(a), a part of the face is affected by the shadow due to the particular lighting condition of the
lting in poor subjective recognition, which in some cases may affect subsequent processing. Existing
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Unsupervised Learning Non-uniform Face Enhancement

) Input

(d) Zero_DCE

(e) EnlightenGAN

) NPE

(c) SIRE

(h) OURS

(g) SAGC

(f) NeRCo

input face exhibits non-uniform brightness due to backlighting. (a) The non-uniform input face, (b) the
d by Zero-DCE [9], (c) the result generated by EnlightenGAN [10], (d) the result generated by SAGC [3],
generated by NPE [30], (f) the result generated by SIRE [6], (g) the result generated by NeRCo [34], (h)

tness enhancement algorithms use equalization criteria to enhance different regions of the image, and
produce under-exposed or over-exposed regions [31].
e the non-uniform image, Wang et al. [30] propose the model Naturalness Preserved Enhancement (NPE)
on brightness analysis. In Fig. 1(b), the enhanced result improves the subjective performance, but still

he low light. Fu et al. [6] introduce Simultaneous Illumination and Reflectance Estimation (SIRE) for
mage enhancement, which is also based on image brightness estimation. His enhanced image in Fig. 1(c)
d enough. When traditional methods are used for this problem, the reconstruction performance is still not
Then, many deep learning methods [20, 29] are proposed for the non-uniform low-light enhancement.
s require many input/output image pairs to train the networks. The low-quality faces such as Fig 1(a) are
brightness state which is difficult to obtain for the training pairs. Then, some methods of face relighting
for data simulation. Nestmeyer et al. [21] explore an end-to-end deep learning architectures that both
splease an image of a human face based on the BRDF model [13].

directly learning an image-to-image mapping as in previous methods, these solutions introduce
networks and illumination analysis (e.g. Zero-Reference Deep Curve Estimation, Zero-DCE [9]). Jiang
opose an unsupervised generative adversarial network (EnlightenGAN) that can be trained without
rightness image pairs and performs well on various real-world test images. However, these methods,
.: Preprint submitted to Elsevier Page 2 of 20
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Unsupervised Learning Non-uniform Face Enhancement

h-low adaptive enhancement or multi-exposure fusion enhancement to achieve non-uniform low-light
ement, can result in poor foreground enhancement or background overexposure. As demonstrated in
e), the image cannot be effectively reconstructed due to unnatural detail reconstruction and the improved
nnatural colors. The recent proposed unsupervised methods Neural Representation for Cooperative Low-
hancement (NeRCo) [34] and semantics-aware low-light enhancement model (SAGC) [3] also enhance

rm low-light images. Fig. 1(f) shows a face affected by under-exposure, while Fig. 1(g) depicts a face
overexposure. Interestingly, the input face in Fig. 1(a) retains good details in well-lit regions, whereas

ned methods alter these intensities, affecting the representation.
re, to better reconstruct face images under different lighting conditions, two types of methods are
uding portrait relighting [38] and shadow removal [4]. The former relies on supervised training datasets to
enhancement of face images with different lighting conditions. The latter removes shadows by detecting
them, thereby realizing the enhancement of face images. However, due to the peculiarities of the backlit
tate, it is difficult for these methods to reconstruct the ideal enhancement results when the foreground

extremely low-light state. The performance of existing work shows that image enhancement is poor
knowledge. However, their results are also not good enough.
er, we introduce an unsupervised augmentation method for non-uniform low-light face images without
high-quality training pairs. Our approach begins with data analysis and the proposal of a physics-guided
ge decoupling. Through this model, we aim to achieve an optimal representation for the subsequent
blish a two-phase iterative enhancement process that incorporates consistency constraints on the results.

s, we present a face illumination decoupling network framework that guides low-quality inputs toward
a high-quality uniform brightness image through training, designed to iteratively update the face
while focusing on enhancing details. Finally, we employ a discriminative network to constrain the

the enhanced results.
contributions of this work are summarized as follows:

t a dataset NUL-Face 1 by collecting the non-uniform illumination face images from the website. The
contains non-uniform illumination images without training pairs. Our unsupervised learning model for
ancement is trained on the dataset.

pose the physics-guided model to enhance the non-uniform illumination face images without training
ur network is based on model analysis and illumination decoupling to update the face images.
b.com/jeanfang/NUL-Face.git.
.: Preprint submitted to Elsevier Page 3 of 20
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Unsupervised Learning Non-uniform Face Enhancement

es (b) Simulated Faces (c) Shadings (d) Albedos (d) Residual Terms

high-quality face images are decomposed into albedos, shadings and the corresponding residuals. (a) The
simulated non-uniform faces. (c) The shadings separated from the faces. (d) The albedos of the faces, (e)
rms.

ve experiments demonstrate the effectiveness of our method compared to the existing methods. For
vised training on the randomly selected non-uniform illumination face images, our model performs well
on-uniform illumination face images in reality.

nder of the paper is organized as follows. In Section 2, we introduce some related works. Our method is
ection 3. The experiments on synthetics and real-world low-quality images are conducted in Section 4.
e conclude our work.

Work

t Relighting
the backlit, many works [21] have been proposed to improve or generate the exposure state of the
rtrait Shadow Manipulation (PSM), Zhang et al. [38] present a computational approach that gives
raphers some of this control, thereby poorly-lit portraits to be relit post-capture in a realistic and
lable way. In [28], Wang et al. formulate the single image relighting task and propose a novel Deep
twork (DeepRelight) with scene reconversion, shadow prior estimation, and re-renderer to form the
ation under the target light source. He et al. [32] present a hybrid parametric neural relighting (PN-

amework for single portrait relighting.
.: Preprint submitted to Elsevier Page 4 of 20
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Unsupervised Learning Non-uniform Face Enhancement

the experimental results of the existing work show that it is difficult to reconstruct ideal enhancement
hting algorithms due to the special nature of the backlit illumination state, or when the foreground image

mely low lighting conditions, where the image enhancement is poor in the absence of prior knowledge.

iform Low-light Enhancement
ination image enhancement approaches [9] amplify illumination and improve the visibility of dark
are classified mainly into two categories: Retinex decomposition-based [12], and deep learning-

illumination enhancement methods can not be applied to the non-uniform illumination scene directly,
e algorithms [29] are proposed to address the problem. Instead of directly learning an image-to-
g as in previous work, some methods introduce the illumination analysis (Zero-Reference Deep Curve
ero-DCE) [9]) or multiple exposure illumination [18] for non-uniform illumination images enhancement
[33], a non-local similarity decomposition model based on the Retinex theory is proposed to obtain high-
ced results for non-uniform low-light images. To address the high complexity, Zhou et al. [39] design a
tion, Adaptive Surround Function, to estimate the illumination map, which has the conventional surround
and can be trained end to end for low-light enhancement.
l. [29] introduce intermediate illumination in our network to associate the input with the expected

result (DeepUPE), which augments the network’s capability to learn complex photographic adjustment
touched input/output image pairs. In [26], focusing on the fact that the intensity histogram of a backlit
characteristic bimodal distribution, Ueda et al. propose an image enhancement method for single backlit
histogram specification. Liu et al. [17] propose a Locally-Adaptive Embedding Network, to realize
ow-light image enhancement with locally-adaptive kernel selection and feature adaptation for multi-
sues. Yang et al. [34] introduce the semantic-orientated supervision method NeRCo with priors for non-
ight images from the pre-trained vision-language model, which encouraged results to meet subjective
finding more visual-friendly solutions.
g high and low brightness adaptive enhancement or multiple exposure fusion enhancement algorithms

ent, the experimental results show that the adaptive optimization is often insufficient, resulting in poor
hancement or background over-exposure. And because of the insufficient reconstruction of details, image
cannot be achieved effectively.
.: Preprint submitted to Elsevier Page 5 of 20
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Unsupervised Learning Non-uniform Face Enhancement

rvised Image Enhancement
from the development of unsupervised learning methods in image processing [16], many unsupervised
been proposed to address the task of low-light enhancement. Fu et al. [7] designed an illumination-

n module based on Generative Adversarial Network (GAN) [8] that enhanced the feature extraction of
address the problems of image noise and color bias, as well as improve the visual quality for the unpaired

ght images. Ye et al. [11] introduced an unsupervised method that integrates a layer decomposition
light-effects suppression network for low-light enhancement (LDLES-Net). Chen et al. [3] proposed

ware yet unsupervised low-light enhancement model (SAGC) that utilized gamma correction and was
h-quality reference images and the inherent semantic information for image enhancement. Sun et al. [25]
nsupervised Multi-Branch with High-Frequency Enhancement Network which contain an multi-Branch
high-frequency components enhancement module for image enhancement.

these methods solve the problem of unpaired data, the quality of the enhanced images is limited, e.g.,
enhance the holistic brightness of the input but cause over-exposure in the regions with relatively high
sides, these methods cannot deal with the noise well simultaneously, which has a significant impact on
lity of the enhanced images.

tion
ned above, it is difficult to obtain aligned low-light and target face pairs for complex, non-uniformly
ce images. The few known corresponding face datasets also fail to achieve full illumination coverage.
network models trained on such datasets are difficult to apply to different real-world scenarios. Due to

ightness analysis of complex low-light faces, known low-light enhancement algorithms face challenges
oth detail enhancement and uniform illumination representation for non-uniform low-light faces.
s these issues, we attempt to achieve non-uniform illumination face enhancement without high-quality
ty pairs and realize image enhancement with illumination decoupling based on the 3D Morphable Model
Inspired by [21], our solution introduces an optimal representation model for face illumination

𝐿 = 𝑎 ⋅ 𝑠. (1)

lified model can be seen as a diffuse decomposition into two face features albedo 𝑎 and shading 𝑠 as in
represents the target high-quality face image. In this model, the albedo and shading can be considered
he original face and the light feedback.
.: Preprint submitted to Elsevier Page 6 of 20
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Unsupervised Learning Non-uniform Face Enhancement

aces (b) Albedos (c) Shadings (d) Residual Terms

non-uniform low-light face images are decomposed into the albedos, shadings, and the corresponding residual
low-quality faces, (b) the abledos of these faces, (c) the divided shadings, and (d) the residual terms.

, such a simple model implements feature decomposition in an idealized state with residual values
⋅ 𝑠. However, under uniform illumination, the residual values for most areas of the face are extremely

s the illumination changes and the face is under non-uniform illumination, it is difficult for the model
the original face, leading to increasingly large residual values.
nario, the initial input faces are non-uniform and low-light. Given a low-light face image 𝐿0 with
ination, we assume it to be a high-quality face to apply the above model and decompose it into two

ns 𝑎0 and 𝑠0. However, since the initial face is non-uniform, we introduce a residual term 𝑟𝑒𝑠0 in the
odel.

𝐿0 = (𝑎0 + 𝑟) ⋅ 𝑠0 = 𝑎0 ⋅ 𝑠0 + 𝑟𝑒𝑠0, (2)

s the light-varying residual, and the residual term 𝑟𝑒𝑠0 = 𝑟 ∗ 𝑠0 is determined by the varying illumination
arly seen as the difference between the low-light and target natural images. In Fig. 3, 𝑟𝑒𝑠0 also reflects
n distribution.
.: Preprint submitted to Elsevier Page 7 of 20
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Unsupervised Learning Non-uniform Face Enhancement

utions of three non-uniform images are shown in Fig. 3. The image in the first row is from the test set
ted by 3DMM, where the face images are in a non-uniform illumination state. Due to the correlation of
rained model reconstructs albedo and shading accurately. However, the reconstruction of the decoupled
not accurate enough due to the non-uniform illumination. We define the difference 𝑟𝑒𝑠0 as the residual

yzing the information of 𝑟𝑒𝑠0, we find that it preserves more high-frequency information about the face,
ing the illumination state of the original image more clearly. The images in the second and third rows are
independent of the dataset, and under the same training model, the albedo and shadow can be decoupled,
e information and sharpness are less accurate. However, the residual term retains the same representation
ation state.
on to improve the non-uniform face images is based on information updating and illumination decoupling.
te the input 𝐿0 to the image 𝐿1 with the constraint of the illumination distribution ||𝑟𝑒𝑠0 + 𝑟1 ⋅ 𝑠0||22 as:

𝐽 (𝐿1, 𝑟1) = arg𝑚𝑖𝑛{||𝐿1 − (𝐿0 + 𝑟1 ⋅ 𝑠0)||22 + ||𝑟𝑒𝑠0 + 𝑟1 ⋅ 𝑠0||22}, (3)

e compensation illumination to optimize the face image 𝐿1 = 𝐿𝑖𝑛𝑖 + 𝑟1 ⋅ 𝑠0. It is reconstructed under the
he illumination decoupling term 𝑟𝑒𝑠0. After obtaining the image 𝐿1, we replace 𝐿𝑖𝑛𝑖 with the new image
ions 𝑎1 and 𝑠1.

𝐿1 = 𝑎1 ⋅ 𝑠1 + 𝑟𝑒𝑠1. (4)

pdate the input image 𝐿1 to the image 𝐿2 with the residual term:

𝐽 (𝐿2, 𝑟2) = arg𝑚𝑖𝑛{||𝐿2 − (𝐿1 + 𝑟2 ⋅ 𝑠1)||22 + ||𝑟𝑒𝑠1 + 𝑟2 ⋅ 𝑠1||22}, (5)

so the compensation lighting to optimize the face image 𝐿2 = 𝐿1 + 𝑟2 ⋅ 𝑠1.
mination parameters 𝑟1 and 𝑟2 are updated iteratively, the information in the face image becomes more
ilar to the target image with uniform illumination, and the generations of different iterations become
other, as 𝐿1 ≈ 𝐿2. Then the generation tends towards the target.

ks
the reconstruction for the final result, we design an iterative CNN network in Fig. 4. The generation
s the analysis of the face enhancement with the illumination distribution and updates the face result

aining pairs. We enhance the low-light input 𝐿0, and generate the result 𝐿2 with the intermediate result
.: Preprint submitted to Elsevier Page 8 of 20
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U-Net
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framework of our proposed non-uniform low-light face enhancement algorithm. The generation involves two
e the results. The network in each step has the same network structure, which decomposes the input image
-distributions: albedo 𝑎 and shading 𝑠. It then generates the residual term 𝑟𝑒𝑠 for illumination decoupling.
idual term 𝑟𝑒𝑠 is concatenated with the input image 𝐿 to feed the enhanced face image network. The VGG
network transfers the generations and the input image to the features and maintains their feature consistency
e image quality of the generations.

(1), the input 𝐿0 is decomposed into features with network modules. The network modules are included
and U-Net [22]. The input is fed into VGG and U-Net for facial features. Then these features are split
onents 𝑎0 and 𝑠0 by two U-Net modules. For better generations, this part of the network is pre-trained

ets from [40]. Then we generate the results 𝑟𝑒𝑠0 according to Eq. (2). The generation of 𝑟𝑒𝑠0 can be used
varying illumination 𝑠1. So we feed in 𝐿0 and 𝑟𝑒𝑠0 for the intermediate result 𝐿1 according to Eq. (3).

, the estimation for the generation is based on the iterative update. After obtaining the result 𝐿1, we feed
ork in the second stage for the final result 𝐿2 with the residual result 𝑟𝑒𝑠1, which is generated from the
ns 𝑎1 and 𝑠1. The iterative training from the initial image 𝐿0 to the intermediate result 𝐿1 and then on

ion 𝐿2 is extended. If the output 𝐿2 and the intermediate result 𝐿1 are close enough, it means that the
een sufficiently trained and the input image has been accurately updated.

achieve training for reinforcement without training pairs, the proposed network must be constrained
spectives.
raint of the training goal. In this work we build an iterative framework with two generations 𝐿1 and
ment of motivation, the result should be shared with little varying light, which makes the generation 𝐿1

ing the training.
.: Preprint submitted to Elsevier Page 9 of 20
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Unsupervised Learning Non-uniform Face Enhancement

raint of the convergence direction. The goal of the network is to realize 𝐿1 ≈ 𝐿2, but we should also
nvergence of the improvement. Especially the input 𝐿0 is in the complex ill-posed brightness, then we
analysis of the illumination for the convergence direction.
e quality constraint. The generations of the network may contain the artifacts during training. Then we
improved quality with the image characteristics. Then the discriminative network in Fig. 4 is proposed
e consistency between the generations and the natural high quality images for better image quality.
ining, the above constraints can be set as different loss functions for the well enhancement.

nctions
functions for the training goal. To obtain better face images, we set different loss functions for the
training. The first loss function is proposed to limit the sufficient optimization, making the generation 𝐿2

e intermediate results 𝐿1,
𝑙𝑜𝑠𝑠0 = ||𝐿2 − 𝐿1||22. (6)

aired setting, the second loss function follows the self-feature preserving loss to constrain the VGG [23]
e between the low-light input and its enhanced normal light output images by the VGG model Φ.

𝑙𝑜𝑠𝑠1 = ||Φ(𝐿0) − Φ(𝐿1)||22 + ||Φ(𝐿0) − Φ(𝐿2)||22. (7)

loss function makes the generations contain the facial features as the input. We utilize the model to
arsing features 𝑃 as [24] from the generations 𝐿1 and 𝐿2, and constrain the distance between them and
light image.

𝑙𝑜𝑠𝑠2 = ||𝑃 (𝐿0) − 𝑃 (𝐿1)||22 + ||𝑃 (𝐿0) − 𝑃 (𝐿2)||22. (8)

unctions for the convergence direction. The fourth loss function is to enhance the low-light region with
analysis. According to [10], we adopt image intensity maps, which decompose each low-light face into
w-light 𝑀𝑙 (Fig. 5(d)) and high-light 𝑀ℎ (Fig. 5(c)), as binary attention maps. The loss function is set

𝑙𝑜𝑠𝑠3𝑎 = ||𝐿1 ⋅𝑀𝑙∕𝑠𝑢𝑚(𝑀𝑙) − 𝐿0 ⋅𝑀ℎ∕𝑠𝑢𝑚(𝑀ℎ)||22, (9)

𝑙𝑜𝑠𝑠3𝑏 = ||𝐿2 ⋅𝑀𝑙∕𝑠𝑢𝑚(𝑀𝑙) − 𝐿0 ⋅𝑀ℎ∕𝑠𝑢𝑚(𝑀ℎ)||22. (10)
.: Preprint submitted to Elsevier Page 10 of 20



Journal Pre-proof

Our goal i
the fifth loss f
illumination r

The loss f
for image smo

The last l
generations 𝐿

The above

where 𝛼𝑖 is th

3.4. Implem
Training

optimizer [15]
𝛼3 to 10, 𝛼6 to
study experim
to 50 during t
the test model

4. Experim

4.1. Databa
We have e

image dataset

Xin Ding et al
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement

s to make the intensities in the low-light part approach the intensities in the high-light part. Therefore,
unction is proposed to constrain the generations 𝐿1 and 𝐿2, which maintain the intensities in the high-
egion of the input 𝐿0, as

𝑙𝑜𝑠𝑠4 = ||𝐿1 ⋅𝑀ℎ − 𝐿0 ⋅𝑀ℎ||22 + ||𝐿2 ⋅𝑀ℎ − 𝐿0 ⋅𝑀ℎ||22. (11)

unctions for the image quality. To preserve the monotonicity relationships between neighboring pixels
othness, we introduce the sixth loss function to the generations with the tv loss function 𝑙𝑜𝑠𝑠𝑡𝑣 in [9]:

𝑙𝑜𝑠𝑠5 = 𝑙𝑜𝑠𝑠𝑡𝑣(𝑟𝑒𝑠0) + 𝑙𝑜𝑠𝑠𝑡𝑣(𝑟𝑒𝑠1) + 𝑙𝑜𝑠𝑠𝑡𝑣(𝐿1) + 𝑙𝑜𝑠𝑠𝑡𝑣(𝐿2). (12)

oss function acts as the discriminator of GAN. We take the model of the discriminator 𝐷 from the
1 and 𝐿2 and constrain the distance between them and the input low-light image.

𝑙𝑜𝑠𝑠6 = ||𝐷(𝐿0) −𝐷(𝐿1)||22 + ||𝐷(𝐿0) −𝐷(𝐿2)||22. (13)

loss functions all contribute to the final results, and the total loss function is expressed as follows:

𝑙𝑜𝑠𝑠𝑡 =
6∑
𝑖=0

𝛼𝑖 ⋅ 𝑙𝑜𝑠𝑠𝑖, (14)

e balance parameter determined by experimental analysis.

entation Details
Setting: the architecture of the module follows Fig. 4. The model is trained using the ADAM
. To maintain the stability of the global loss and to balance these loss values, we set the balance parameter
0.1 and other parameters to 1 after experimental verification. We change these parameters in the ablation
ents. The learning rate is set to 5𝑒−5. The batch size is set to 1, and the number of training epochs is set

raining. In every 10 epochs, we validate the performance of the enhancement and choose the best one as
. Our experiments are implemented on Pytorch using NVIDIA RTX 2080Ti GPUs.

ents

ses
xperimentally verified the effectiveness of our algorithm on the self-built non-uniform low-light face

NUL-Face, using a reverse image search engine, as shown in Fig. 5. The dataset comprises 2000 face

.: Preprint submitted to Elsevier Page 11 of 20
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(a) Faces (b) Face Masks
(c) High-illumination

Binary Maps

(d) Low-illumination

Binary Maps

images from our face database NUL-Face, including (a)face images, (b)face masks, (c)high-illumination,
mination binary maps.

ining and 50 for testing, all of which are downloaded from the website. Notably, neither the training nor
have corresponding high-quality counterparts. Furthermore, we evaluated the performance on the 27

from the MIT-Adobe dataset [2]. The images all are sized as 224 × 224.
e the illumination states of the low-quality images as Fig. 5(a), we estimate the high-illumination binary
g. 5(c)) and low-illumination binary maps 𝑀𝑙 (Fig. 5(d)) based on the face mask. The face mask as
nerated by the parsing map learning method [37].

n Study
loss functions: in this part, we provide an ablation study on the effect of the different loss functions,
ect. 3.3. During the experiment, we set each of the different balance parameters 𝛼𝑖 as zero, and remove
on the training network. And then we test their effects. When we set the balance parameter 𝛼0 = 0, it
get rid of the constraint 𝑙𝑜𝑠𝑠0, which is represented as without 𝛼0. Others are similar. As shown in Fig. 6,
ss functions have their effects on the generations.
face in Fig. 6(a) suffers from non-uniform illumination, and part of the face has low brightness. The
𝛼0 in Fig. 6(b) is slightly over-exposed with artifacts and streaks. This is because the generation without
.: Preprint submitted to Elsevier Page 12 of 20
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Inputs

(b) w/o 𝒂𝟎 (c) w/o 𝒂𝟏 (d) w/o 𝒂𝟐 (e) w/o 𝒂𝟑

(i) OURS(f) w/o 𝒂𝟒 (g) w/o 𝒂𝟓 (h) w/o 𝒂𝟔

results of the ablation study. The unsupervised network is constrained by different loss functions, then we
onding balance parameter to zero to test its impact. (a) The input image, (b) the result without 𝛼0, (c) the
𝛼1, (d) the result without 𝛼2, (e) the result without 𝛼3, (f) the result without 𝛼4, (g) the result without 𝛼5,
without 𝛼6, (i) our result. The boxes in red are zoomed in for more details.

romote the good brightness state. The result without 𝛼4 in Fig. 6(f) is more over-exposed, especially
umination region of the input. It shows that the loss function 𝑙𝑜𝑠𝑠4 really preserves the original high-
egion of the face. The results without 𝛼1 (Fig. 6(c)), 𝛼5 (Fig. 6(g)) and 𝛼6 (Fig. 6(h)) suffer from the
treaks, representing that these loss functions provide the constraint of the image details and quality. The
𝛼2 in Fig. 6(d) is in a bad situation, meaning that the VGG feature distance is important during the
And the result without 𝛼3 is similar to the input face, showing that the illumination analysis provides

ce direction for the training. Without 𝑙𝑜𝑠𝑠3, the network cannot even enhance the input face. The above
nstrates the validity of our different loss functions.
re, we also test the objective metrics of the generations in the ablation study. For our testing images
orresponding reference targets, we utilize the non-reference metrics Perception-based Image Quality
E) [27] and Contrast-Distorted Images Quality (CEIQ) [5]. We also introduce the metric LOE [30] to
rm performance on low-light facial images.

s of LOE correspond to uniform performance. Our work focuses on restoring faces with consistent
re LOE is crucial among the validation metrics. In Tab. 1, the restoration without 𝛼6 demonstrates
.: Preprint submitted to Elsevier Page 13 of 20



Journal Pre-proof

Table 1
The average n

the best perfo
discriminator,
However, from
as the constrai
In summary, o

The non-r
PIQE, the bet
validate to the
in the red box

The non-r
better results.
more similar
non-uniformit
ranks among t

In terms o
And the subje

4.3. Compa
The relate

and the frame
NeRCo [34]. A

The propo
results of NP

Xin Ding et al
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement

on-reference metrics PIQE [27], CEIQ [5] and LOE [30] of the ablation study on the dataset NUL-face.

Algorithms ↓ PIQE ↑ CEIQ ↑ LOE
inputs 42.30 3.35 /
w/o 𝛼0 20.95 3.41 834.94
w/o 𝛼1 17.93 3.40 900.24
w/o 𝛼2 27.56 3.39 305.23
w/o 𝛼3 28.07 3.35 116.53
w/o 𝛼4 17.48 3.08 888.34
w/o 𝛼5 8.89 3.39 949.03
w/o 𝛼6 24.29 3.37 1451.46
Ours 21.49 3.38 1356.44

rmance, while the result incorporating all loss functions ranks second. This indicates that the GAN’s
which distinguishes between generated images and the input 𝐿0, can undermine uniform performance.
Fig. 6(h) it can be seen that the result without 𝛼6 is overexposed. Consequently, the GAN’s discriminator

nt ensures a balance between restoring low-light images and preventing overexposure in the final output.
ur proposed algorithm achieves the best overall results when all loss functions are included.

eference metric PIQE is used to validate the image quality of these generations. The lower the value of
ter the result. From Tab. 1, the metric without 𝛼5 has the best performance. PIQE, as the metric, usually
whole image, which may ignore the details. From Fig. 6(g), the result without 𝛼5 from the heavy streaks

. Though its metric PIQE is better, it does not mean that the constraint of 𝑙𝑜𝑠𝑠6 make no sense.
eference metric CEIQ also reflects the quality of these generated images. A higher CEIQ value indicates
CEIQ focuses on the contrast of the image, based on the premise that a high-contrast image is often

to its contrast-enhanced counterpart. The result obtained without 𝛼0 is the best, possibly because the
y improves CEIQ. The values obtained through different loss functions are very close, and our method
he top results.
f these metrics, our result is not the best. However, this may be due to the instability of the non-reference.
ctive results show our superiority and our comprehensive performance of the metrics is optimal.

rison with methods
d non-uniform low-light enhancement algorithms include the traditional algorithms NPE [30], SRIE [6],
work of deep learning algorithms, Zero-DCE [9], EnlightenGAN [10], SAGC [3], LDLES-Net [11] and

ll the deep learning algorithms are retrained and fine-tuned on the NUL-Face and MIT-Adobe datasets.
sed method has been evaluated through objective and subjective experiments. In Fig. 7, visual comparison
E, SRIE, Zero-DCE, EnlightenGAN, SAGC, LDLES-Net, NeRCo, and our proposed method are
.: Preprint submitted to Elsevier Page 14 of 20
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(b) NPE (c) SEIR (d) EnlightenGAN (e) Zero_DCE (i) OURS(f) SAGC (g) LDLES-Net (h) NeRCo

results of real non-uniform low-light face images from the NUL-Face and MIT-Adobe datasets generated by
methods NPE [30], SRIE [6], Zero-DCE [9], EnlightenGAN [10], SAGC [3], LDLES-Net [11], NeRCo [34]

can be observed that NPE and SRIE, the traditional algorithms, exhibit subpar performance. Although
are recovered, the details in dark regions still suffer from low light. LDLES-Net generates results that
m low illumination, even worse than the input images. Unsupervised deep learning methods, Zero-DCE
GAN, produce better reconstruction results but have limitations. Both Zero-DCE and EnlightenGAN
from incorrect colors. SAGC can enhance low-light images, but the results are overexposed and affect the
o shows much better performance with good facial details. However, there is an obvious color difference
enerated result and the input image, with overexposure or color distortion of the originally well-lit areas.
r method surpasses these approaches in terms of details and illumination. The colors in our reconstructed
y match the intensity of the high-illumination region. By incorporating brightness analysis, our model
ely applied to most real non-illuminated face images.

itative results are shown in Tab. 2, where we have used non-reference metrics such as BRISQUE [19],
and LOE [30] to evaluate the image quality of our proposed method and the baselines. The best results
d in bold. LOE scores are used to assess the uniformity of image illumination, and is crucial among the
trics. As this metric requires a comparison to the original inputs, it cannot be computed for the input
.: Preprint submitted to Elsevier Page 15 of 20
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on-reference metrics BRISQUE [19], PIQE, CEIQ and LOE of our results and the comparison methods
E [6], EnlightenGAN [10], Zero-DCE [9] on the real test faces of the datasets NUL-face and MIT-Adobe.

sets NUL-face MIT-Adobe
Metrics

↓ BRISQUE ↓ PIQE ↑ CEIQ ↑ LOE ↓ BRISQUE ↓ PIQE ↑ CEIQ ↑ LOE

uts 190.47 42.30 3.35 / 172.88 14.40 3.12 /
[30] 178.31 43.49 3.38 457.42 166.98 8.26 3.26 730.85
[6] 37.09 50.66 3.40 222.15 151.40 14.08 3.32 204.07

GAN [10] 36.24 44.12 3.33 955.90 152.25 21.27 3.34 999.75
CE [9] 33.30 38.59 3.16 455.41 151.40 7.58 3.16 597.34
C [3] 136.67 40.63 3.05 559.02 177.73 9.93 3.13 303.18
Net [11] 146.19 40.30 3.17 614.91 150.24 16.78 3.09 388.35
o [34] 146.78 36.80 3.44 4399.11 179.23 26.58 3.53 3501.86
rs 28.26 21.49 3.38 1356.44 149.72 12.18 3.33 3694.41

Input

Input

Input

Input

Failure Case

Failure Case Failure Case

Failure Case
(a) (c)

(b) (d)

Figure 8: Our failure cases of the low-quality images.

OE scores indicate that our results have better performance in terms of uniform image illumination.
Co outperforms our method in the NUL-face dataset, this is primarily due to the overexposure in their
benefits their LOE scores. In contrast, our approach strikes a balance between effectively restoring

es and preventing overexposure in the final output.
and PIQE metrics are utilized to evaluate image quality, and our proposed method outperforms existing

s evidenced by the higher scores we achieved. This demonstrates the effectiveness of our solution. This
effectiveness of our solution. CEIQ measures enhancement performance based on natural scene statistics.
t, the results from EnlightenGAN and Zero-DCE, which are generated using deep learning techniques,
Q values. NeRCo achieves the best CEIQ performance across both datasets and also scores highest on the
.: Preprint submitted to Elsevier Page 16 of 20
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r the NUL-face dataset; however, its performance in other metrics is inferior to ours. While CEIQ tends
s with high contrast, NeRCo’s tendency for overexposure may contribute positively to its CEIQ scores.

tained through different loss functions are quite similar, and our method consistently ranks among the top
ll, our approach achieves high scores across nearly all metrics, establishing it as the leading performer
atasets.

and Failure Cases
ining, there are some details of the images that need to be taken into account. Since our network is
the convergence of the training process is very sensitive. Then it has high demands on the learning rate.
ning rate is set as 1𝑒−4 (in many deep learning methods, this learning rate tends to good performance),
the network is not good with, and the generations are extremely poor.
re, there are some failure cases in our work as shown in Fig. 8. The low-quality faces suffer from the
r situations. In Fig. 8 (a) and (b), the low exposure leads to a complete missing of details in some regions,
ossible to improve the quality regardless of any adjustments made to the facial state. In Fig. 8(c), the

features and the high contrast between the foreground and background complicate effective enhancement.
he complex lighting results in varying degrees of under-exposure; while some areas, though dark, can
formation through enhancement, other regions are so dark that recovery is impossible. This ultimately
ll enhancement of the face. In such complex situations, our unsupervised network is unable to sufficiently
images.

ion
focuses on overcoming the poor quality of faces in non-uniform, low-light face images. Complex
akes it difficult to identify image details, and existing methods face challenges in effectively enhancing
e propose an unsupervised non-uniform low-light face enhancement algorithm that trains the network

ity face images without corresponding high-quality images, and then propose an unsupervised non-
ight face enhancement algorithm to achieve iterative updating and detail enhancement of face information
tness analysis. We introduce illumination decoupling to the network to constrain the direction of network

The experiments on the real low-quality face images show that our approach outperforms the state-of-
ds. Of course, our work may encounter failed enhancement results in some extreme scenarios, such as
ws leading to the missing of facial information or complex lighting causing enhancement to fail. In
will introduce generative models or more sophisticated enhancement models to address these failure
.: Preprint submitted to Elsevier Page 17 of 20



Journal Pre-proof

References
[1] Blanz, V., V

Graphics an
[2] Bychkovsky

pairs, in: Th
[3] Chen, Y.H.

enhanceme
[4] Cun, X., Pu

in: Processi
[5] Fang, Y., M

scene statis
[6] Fu, X., Lia

illumination
[7] Fu, Y., Hon

invariant lo
[8] Goodfellow

Processing
[9] Guo, C., Li,

in: Processi
[10] Jiang, Y., G

paired supe
[11] Jin, Y., Yan

European C
[12] Jobson, D.J

Processing
[13] Kajiya, J.T.

143–150.
[14] Kao, W.C.,

recognition
[15] Kingma, D.
[16] Lin, Y.B., T

Vision and
[17] Liu, X., Ma

133, 10903
[18] Lv, F., Liu,

Internationa
[19] Mittal, A., M

Processing

Xin Ding et al
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement

etter, T., 1999. A morphable model for the synthesis of 3d faces, in: Processing on the International Conference on Computer
d Interactive Techniques, pp. 187–194.
, V., Paris, S., Chan, E., Durand, F., 2011. Learning photographic global tonal adjustment with a database of input / output image
e Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition.

, Pan, F.C., Liao, Y.C., Kao, J.H., Wang, Y.C.F., 2023. Semantics-aware gamma correction for unsupervised low-light image
nt, in: the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1–5.
n, C.M., Shi, C., 2020. Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan,
ng of the AAAI Conference on Artificial Intelligence, IEEE. pp. 10680–10687.
a, K., Wang, Z., Lin, W., Fang, Z., Zhai, G., 2014. No-reference quality assessment of contrast-distorted images based on natural
tics. the IEEE Signal Processing Letters 22, 838–842.
o, Y., Zeng, D., Huang, Y., Zhang, X.P., Ding, X., 2015. A probabilistic method for image enhancement with simultaneous

and reflectance estimation. the IEEE Transactions on Image Processing 24, 4965–4977.
g, Y., Chen, L., You, S., 2022. Le-gan: Unsupervised low-light image enhancement network using attention module and identity
ss. Knowledge-Based Systems 240, 108010.
, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets.
of the Advances in Neural Information Processing Systems 27.
C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R., 2020. Zero-reference deep curve estimation for low-light image enhancement,
ng of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789.
ong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z., 2021. Enlightengan: Deep light enhancement without
rvision. the IEEE Transactions on Image Processing 30, 2340–2349.
g, W., Tan, R.T., 2022. Unsupervised night image enhancement: When layer decomposition meets light-effects suppression, in:
onference on Computer Vision, Springer. pp. 404–421.
., Rahman, Z., Woodell, G.A., 1997. Properties and performance of a center/surround retinex. the IEEE Transactions on Image
6, 451–462.
, 1986. The rendering equation, in: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, pp.

Hsu, M.C., Yang, Y.Y., 2010. Local contrast enhancement and adaptive feature extraction for illumination-invariant face
. Pattern Recognition 43, 1736–1747.
P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv: Learning .
seng, H.Y., Lee, H.Y., Lin, Y.Y., Yang, M.H., 2023. Unsupervised sound localization via iterative contrastive learning. Computer
Image Understanding 227, 103602.
, W., Ma, X., Wang, J., 2023. Lae-net: A locally-adaptive embedding network for low-light image enhancement. Pattern Recognition
9.
B., Lu, F., 2020. Fast enhancement for non-uniform illumination images using light-weight cnns, in: Proceedings of the 28th ACM
l Conference on Multimedia (ACM MM), pp. 1450–1458.
oorthy, A.K., Bovik, A.C., 2012. No-reference image quality assessment in the spatial domain. the IEEE Transactions on Image

21, 4695–4708.
.: Preprint submitted to Elsevier Page 18 of 20



Journal Pre-proof

[20] Mustapha,
adaptive co

[21] Nestmeyer,
of the IEEE

[22] Ronneberge
Internationa

[23] Simonyan,
[24] Smith, B.M

Vision and
[25] Sun, H., Lu

dehazing. P
[26] Ueda, Y., M

the IEEE In
[27] Venkatanat

features, in:
[28] Wang, L.W

the Europea
[29] Wang, R., Z

in: Processi
[30] Wang, S., Z

Transaction
[31] Wang, Y., C

perception
[32] Wang, Y., H

small-olat d
[33] Wu, Y., Son

Processing:
[34] Yang, S., D

Proceeding
[35] Yang, S., Z

Transaction
[36] Yang, W., W

enhanceme
[37] Yu, C., Wan

Proceeding
[38] Zhang, X.,

Graphics 39
[39] Zhou, F., Su

Xin Ding et al
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement

A., Oulefki, A., Bengherabi, M., Boutellaa, E., Algaet, M.A., 2017. Towards nonuniform illumination face enhancement via
ntrast stretching. Multimedia Tools and Applications 76, 21961–21999.
T., Lalonde, J.F., Matthews, I., Lehrmann, A., 2020. Learning physics-guided face relighting under directional light, in: Processing
/CVF Conference on Computer Vision and Pattern Recognition, pp. 5124–5133.
r, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Processing of the
l Conference on Medical Image Computing and Computer-Assisted Intervention.

K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 .
., Zhang, L., Brandt, J., Lin, Z., Yang, J., 2013. Exemplar-based face parsing, in: Proceedings of the IEEE Conference on Computer
Pattern Recognition (CVPR).
o, Z., Ren, D., Du, B., Chang, L., Wan, J., 2024. Unsupervised multi-branch network with high-frequency enhancement for image
attern Recognition 156.
oriyama, D., Koga, T., Suetake, N., 2020. Histogram specification-based image enhancement for backlit image, in: Processing of
ternational Conference on Image Processing, pp. 958–962.
h, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S., 2015. Blind image quality evaluation using perception based
the National Conference on Communications, IEEE. pp. 1–6.

., Siu, W.C., Liu, Z.S., Li, C.T., Lun, D.P., 2020. Deep relighting networks for image light source manipulation, in: Proceedings of
n Conference on Computer Vision, Springer. pp. 550–567.
hang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J., 2019a. Underexposed photo enhancement using deep illumination estimation,
ng of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6849–6857.
heng, J., Hu, H.M., Li, B., 2013. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE
s on Image Processing 22, 3538–3548.
ao, Y., Zha, Z.J., Zhang, J., Xiong, Z., Zhang, W., Wu, F., 2019b. Progressive retinex: Mutually reinforced illumination-noise

network for low-light image enhancement, in: Processing of the ACM Multimedia, pp. 2015–2023.
e, K., Zhou, T., Yao, K., Li, N., Xu, L., Yu, J., 2023. Free-view face relighting using a hybrid parametric neural model on a

ataset. International Journal of Computer Vision , 1–20.
g, W., Zheng, J., Liu, F., 2021. Non-uniform low-light image enhancement via non-local similarity decomposition model. Signal
Image Communication 93, 116141.
ing, M., Wu, Y., Li, Z., Zhang, J., 2023a. Implicit neural representation for cooperative low-light image enhancement, in:

s of the IEEE/CVF International Conference on Computer Vision, pp. 12918–12927.
hou, D., Cao, J., Guo, Y., 2023b. Lightingnet: An integrated learning method for low-light image enhancement. the IEEE
s on Computational Imaging 9, 29–42.
ang, S., Fang, Y., Wang, Y., Liu, J., 2020. From fidelity to perceptual quality: A semi-supervised approach for low-light image

nt, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3060–3069.
g, J., Peng, C., Gao, C., Yu, G., Sang, N., 2018. Bisenet: Bilateral segmentation network for real-time semantic segmentation, in:

s of the European conference on computer vision, pp. 325–341.
Barron, J.T., Tsai, Y.T., Pandey, R., Zhang, X., Ng, R., Jacobs, D.E., 2020. Portrait shadow manipulation. ACM Transactions on
, 78–1.
n, X., Dong, J., Zhu, X.X., 2023. Surroundnet: Towards effective low-light image enhancement. Pattern Recognition 141, 109602.
.: Preprint submitted to Elsevier Page 19 of 20



Journal Pre-proof

[40] Zhou, H., H
Conference

Xin Ding et al
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement

adap, S., Sunkavalli, K., Jacobs, D.W., 2019. Deep single-image portrait relighting, in: Processing of the IEEE International
on Computer Vision, pp. 7194–7202.
.: Preprint submitted to Elsevier Page 20 of 20



Journal Pre-proof

Title Pages:

A
X

A
a
S
b
C
c
d

C
E

Title Page
Jo
ur

na
l P

re
-p

ro
of

Unsupervised Learning Non-uniform Face Enhancement Under

Physics-guided Model of Illumination Decoupling

uthors:
in Dinga, Jing Fangb, Zhongyuan Wangc, Qiong Liua*, You Yanga and Zhenyu Shud

ffiliations
School of Electronic Information and Communications, Huazhong University of
cience and Technology, Wuhan, 430074, China
School of Computer Science, Northwestern Polytechnical University, Xian, 710127,
hina
School of Computer Science, Wuhan University, Wuhan, 430072, China
NingboTech University, Ningbo, 315100, China

orresponding author: Qiong Liu
mails: q.liu@hust.edu.cn



Journal Pre-proof

Highlights: 
 

R

 

P

i

 

T

 

T

 

T

r

Highlights
Jo
ur

na
l P

re
-p

ro
of

eal-world non-uniform low-light face enhancement 

hysics-guided Model based on the brightness state of low-quality images for 

llumination decoupling 

he unsupervised network following the theoretical analysis of image decoupling 

he self-built dataset of the real-world non-uniform low-light faces 

he excellent performance of our method on the real-world images compared with the 

ecent methods 



Journal Pre-proof

Author Lists: 

 

X

s

W

U

P

 

 

F

M

d

W

U

 

 

Z

W

C

N

c

 

 

Author Biography
Jo
ur

na
l P

re
-p

ro
of 

in Ding received the B.E. degree from Electronic Information School of Huazhong University of 

cience and technology in 2012, and M.S., and Ph.D. degrees from the school of computer science, 

uhan University respectively in 2016 and in 2022. He is now working as postdoc. at Huazhong 

niversity of Science and Technology. His research interests focus on computer vision and Image 

rocessing. 

 

ang Jing received her B.S degree in communication engineering from Jianghan University and 

.S degree in electronic information engineering from Wuhan University. She received Ph.D. 

egree in National Engineering Research Center for Multimedia Software, School of Computer, 

uhan University, Wuhan, China. He is now working as postdoc. at Northwestern Polytechnical 

niversity. Her research interests include image super resolution and image reconstruction. 

 

hongyuan Wang received the Ph.D. degree in communication and information system from 

uhan University, Wuhan, China, in 2008. Dr. Wang is now an associate professor with School of 

omputer, Wuhan University, Wuhan, China. He is currently directing three projects funded by the 

ational Natural Science Foundation Program of China. His research interests include video 

ompression, image processing, and multimedia communications, etc. 



Journal Pre-proof

Q

W

D

t

T

N

D

a

r

c

 

Y

T

P

h

E

W

L

H

p

m

m

 

Z

a

g

c

Jo
ur

na
l P

re
-p

ro
of

 

iong Liu received the Ph.D. degree in computer science from the School of Computer Science, 

uhan University, Wuhan, China, in 2008. She has worked as a Post-Doctoral Fellow with the 

epartment of Automation, Tsinghua University, from 2010 to 2012. Since 2009, she has been with 

he School of Electronic Information and Communications, Huazhong University of Science and 

echnology, Wuhan, and the Division of Intelligent Media and Fiber Communications, Wuhan 

ational Laboratory for Opto-Electronics, Wuhan, where she is currently a Full Professor with the 

epartment of Information Engineering. She has authored or coauthored more than 50 technical 

rticles and authorized more than 30 patents. Her research interests include cross-discipline 

esearches between artificial intelligence and 3D computer vision, including 3D visual 

ommunication, human–robot interaction, human intention, and interactive visual applications.  

 

ou Yang received the Ph.D. degree in computer science from the Institute of Computing 

echnology, Chinese Academy of Sciences, Beijing, China, in 2009. From 2009 to 2011, he was a 

ost-Doctoral Fellow with the Department of Automation, Tsinghua University. From 2011 to 2013, 

e was the Chief Scientist with Sumavision Research. Since 2013, he has been with the School of 

lectronic Information and Communications, Huazhong University of Science and Technology, 

uhan, China, and the Division of Intelligent Media and Fiber Communications, Wuhan National 

aboratory for Optoelectronics, Wuhan, where he is currently a Full Professor and the Vice Dean. 

e has authored or coauthored over 110 peer-reviewed articles and authorized 41 domestic and U.S. 

atents. His research interests include 3D visual communications and its applications, including 

ultiview imaging systems, 3D/VR/AR content processing and visual communications, human–

achine interaction techniques, and interactive visual applications. 

 

henyu Shu got his Ph.D. degree in 2010 at the Zhejiang University, China. He is now working as 

 full professor at NingboTech University. His research interests include computer graphics, digital 

eometry processing and machine learning. He has published over 30 papers in international 

onferences or journals. 



Journal Pre-proof

Declaration of Interest Statement:

W
o
o
t
m

Jo
ur

na
l P

re
-p

ro
of

e declare that we have no financial and personal relationships with other people or
rganizations that can inappropriately influence our work, there is no professional or
ther personal interest of any nature or kind in any product, service and/or company
hat could be construed as influencing the position presented in, or the review of the
anuscript.


	Unsupervised learning non-uniform face enhancement under physics-guided model of illumination decoupling
	CRediT authorship contribution statement
	Data availability


