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3D Shape Segmentation via Attentive Nonuniform
Downsampling

Zhenyu Shu, Xufei Sun*, Chaoyi Pang, and Shiqing Xin

Abstract—The segmentation of 3D shapes is a critical aspect
of shape analysis. However, most existing methods for 3D shape
segmentation treat each face of the original mesh model with
equal importance. This uniform approach becomes problematic
in areas where the faces are smaller but denser, especially around
the junctions of different segments. In such regions, greater
importance should be assigned compared to the flatter areas. To
address this issue, this paper proposes a novel 3D shape segmen-
tation method that incorporates attentive nonuniform sampling
into the segmentation pipeline. By leveraging a transformer-
based mechanism, our method adaptively identifies the intricate
details of 3D shapes, calculating varying degrees of attention
to each face. Consequently, the mesh model is downsampled by
eliminating faces with lower attention, thereby optimizing the
segmentation process. Our approach outperforms most state-
of-the-art methods on multiple public datasets, making it a
promising avenue for future research.

Index Terms—3D shape segmentation, Deep neural network,
Nonuniform downsampling, Transformer

I. INTRODUCTION

D shape segmentation, which involves partitioning 3D

shapes into semantic parts, is a crucial aspect of 3D shape
understanding and has significant implications for computer
vision, computer graphics, robotics, and mixed realities. A
wide range of tasks, such as 3D mesh reconstruction, 3D
shape deformation, 3D shape classification, and 3D shape
retrieval, require accurate and efficient 3D shape segmentation
algorithms to achieve satisfactory performance. As a result,
3D shape segmentation has drawn considerable attention in
recent years. However, the complexity of 3D shapes has made
it an ongoing challenge, despite the significant research efforts
devoted to this area.

The majority of existing 3D shape segmentation methods
rely heavily on geometric similarity between faces to classify
them into meaningful segments. Therefore, extracting robust
and effective geometric features for each face is essential
in improving the performance of 3D shape segmentation
methods. Previous approaches have primarily utilized estab-
lished 3D shape feature descriptors, such as Shape Diameter
Functions [1] (SDF), Average Geodesic Distance [2] (AGD),
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and Gaussian Curvature [3] (GC), to describe the geometric
features of each face. However, a single feature descriptor
can only capture the features of faces in one aspect, which
significantly hampers the performance of 3D segmentation
algorithms. As a result, later methods [4], [5], [6] have sought
to combine multiple feature descriptors to achieve better
performance than using a single one.

The rapid development of machine learning techniques has
led to an increasing number of 3D shape segmentation meth-
ods that employ machine learning approaches, particularly
deep learning, to obtain more reliable geometric features.
These methods can be broadly classified into two main cat-
egories. The first category involves the use of a deep neural
network to map existing low-level geometric features to high-
level ones, as exemplified in [5], [6]. Typically, this type
of method relies on a large volume of high-quality labeled
training 3D shapes to achieve satisfactory segmentation re-
sults. However, manually labeling each face of 3D shapes
is widely regarded as an arduous and expensive task. The
second category of methods [7], [8], [9] involves projecting 3D
shapes into multiple 2D views and transforming the task of 3D
shape segmentation into 2D image segmentation. Capitalizing
on the transfer of prior knowledge learned from existing 2D
image datasets, this category of methods exhibits superior
performance compared to other approaches. However, it is
susceptible to occlusions that arise during projections, which
limits its performance improvement.

In this paper, we propose a novel 3D shape segmentation
method that incorporates attentive nonuniform downsampling.
Prior approaches that utilize downsampling typically employ
a uniform approach, resulting in significant information loss
across faces, particularly those in regions of high curvature or
intricate details. Our method, however, leverages an attentive
module to automatically calculate the attention value for each
face in the mesh model, thereby preserving more faces in
detail areas during the downsampling phase. As a result,
our approach exhibits a significant advantage over existing
segmentation methods. As shown in Figure 1, our method uti-
lizing attentive nonuniform downsampling can perform better
than uniform downsampling on boundary areas.

Our contributions are two-fold:

e In this paper, we introduce a novel 3D shape seg-
mentation approach that employs attentive nonuniform
downsampling. In contrast to traditional uniform down-
sampling, our newly designed attentive downsampling
method learns the attention value for each face, enabling
automatic and efficient selection of areas for downsam-

pling.
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In most mesh models, the triangular faces are not uniformly placed. In areas with larger curvature, especially in the junctions between different

segments, the faces are usually smaller and denser, while on the other hand, faces in flatter areas are usually larger and more sparse. Treating faces with equal
attention is not the most efficient way in order to segment the 3D mesh model, and thus nonuniformly sample the model, subtract faces in the flatter areas,

which correspondingly add more attention to those faces with greater curvature.

« Extensive experiments on various datasets demonstrate

that our method outperforms previous approaches.

The remaining parts of this paper are organized as follows.
First, we introduce related work in Section II. Second, we
describe the details of our method in Section III. Third, Sec-
tion IV shows the performance of our method and compares
it to state-of-the-art methods on public benchmarks. Fourth,
the limitations and future work of our method are explained
in Section V. Finally, we conclude our paper in Section VI.

II. RELATED WORK

Shape segmentation, the process of partitioning 3D shapes
into meaningful semantic parts, is a critical research area
in computer vision, computer graphics, robotics, and mixed
realities. 3D shapes can be represented using three main
representations: surface meshes, point clouds, or voxels. This
section reviews surface mesh-based methods for 3D shape
segmentation, while some related approaches for point clouds
are also introduced here.

A. Traditional segmentation methods

Early approaches to 3D shape segmentation primarily in-
volved the use of hand-crafted feature descriptors. These
feature descriptors were designed to map all faces into a
feature space and subsequently apply clustering algorithms to
divide them into several classes for segmentation. Naturally,
faces with the same label in a 3D shape should exhibit similar
geometric features. AGD, which is calculated by averaging
the geodesic distance between each vertex and all other
vertices, provides global position information of 3D shapes.
SDF measures the diameter of the local shape of the face to
identify the thin and fat parts of the 3D shape. GC describes
the bending degree of each vertex in the 3D shape. Numerous
studies have demonstrated that using these feature descriptors
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and others yields satisfactory results in 3D shape segmentation.
To further enhance the performance of segmentation, [10],
[11], [12], [13], [14] have proposed combining multiple feature
descriptors to extract features of 3D shapes from multiple
aspects.

B. Supervised segmentation methods

With the rapid development of 3D shape repositories and
machine learning techniques, particularly deep learning, an
increasing number of researchers have been investigating su-
pervised learning-based segmentation methods. These methods
have been found to be superior to traditional and unsupervised
methods due to their ability to learn the mapping relationship
from feature vectors to labels through prior knowledge. As a
result, many researchers are now focusing on these methods.

The first supervised learning-based method for 3D shape
segmentation is introduced by Kalogerakis et al. [4]. They
design an objective function with learnable parameters based
on the Conditional Random Field (CRF) model, which was
optimized by using manually labeled shapes. Similarly, Kaick
et al. [14] propose a novel shape segmentation approach
that utilizes knowledge by analyzing geometric similarity be-
tween matched shapes. Other researchers have used supervised
learning methods on multiple geometric feature descriptors to
segment shapes. For instance, Xie et al. [15] propose a fast
segmentation method on the mesh using Extreme Learning
Machines, while Guo et al. [5] employ deep convolutional
neural networks to transform multiple geometric feature de-
scriptors into a two-dimensional matrix for 3D shape segmen-
tation. Su et al. [16] present a multi-prototype classifier for 3D
point cloud segmentation, with each prototype representing
the classifier weights for a specific subclass and incorporat-
ing two constraints to update the prototypes and promote
diverse learning. Experimental results affirm the effectiveness
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of the proposed method, especially in low-label scenarios,
and demonstrate the discovery of semantic subclasses without
requiring additional annotations. Zhao et al. [17] introduce JS-
Net++, a novel approach for 3D point cloud segmentation that
integrates instance and semantic segmentation. Their method
utilizes a joint module to fuse features from various layers
of the backbone network, enabling mutual benefits between
the two tasks. Song et al. [18] introduce a hybrid semantic
affinity learning method for 3D point cloud segmentation,
which captures label dependencies by combining global priors
from structural correlations via a graph convolutional network
and local affinity to model semantic similarities within and
between classes. Their approach enhances the performance
of state-of-the-art models across various datasets, including
indoor, outdoor, and synthetic environments. Zhang et al. [19]
combines the concept of sparse prior, achieved through a
differentiable sparse encoding sub-network and a semantic
feature extraction sub-network, showing significant improve-
ment in multiple evaluation metrics. SCMS-Net [20] can
effectively segment three-dimensional meshes through self-
supervised learning without the need for a large amount of
annotated data, with high efficiency and accuracy. Wang et
al. [21] propose a 3D mesh instance segmentation method that
integrates 2D and 3D data, and utilizes the rich information of
two-dimensional images and the geometric features of three-
dimensional meshes, achieving precise instance segmentation.
Laplacian2Mesh [22] applies Spectral Transformation to mesh
understanding tasks and leverages the Laplacian spectral the-
ory to manage the irregularities inherent in polygonal meshes.
DGNet [23] presents a novel approach to deep neural net-
work (DNN) processing for arbitrary mesh structures. The
method, referred to as DGNet, addresses common challenges
in mesh processing, such as handling non-manifold geometries
and irregular structures that complicate hierarchical feature
aggregation. Shi et al. [24] introduce three innovative mod-
ules designed to extract diverse temporal information from
both local and global contexts, effectively improving feature
representation in target frames. Their approach demonstrates
superior performance in 3D point cloud semantic segmentation
across SemanticKITTI and SemanticPOSS datasets.

In addition to feature-based methods, view-based methods
have also been applied to 3D shape segmentation by establish-
ing a connection between 3D shapes and their 2D projection
collections. Wang et al. [7] label each projection using the
knowledge learned from labeled projections, and then project
the labels back onto the mesh for segmentation. Kalogerakis
et al. [9] use an image-based Fully Convolutional Network
to label the projections, resulting in excellent segmentation
results. Le et al. [25] propose a method that treats multiple
2D projections of the 3D shape as a sequence and uses Re-
current Neural Networks (RNNs) for segmentation. Similarly,
MeshWalker [26] also uses RNNs for 3D shape segmentation,
but their sequences were obtained by random walking on the
mesh surface. Chang et al. [27] introduce a novel multi-phase
fusion network for 3D point clouds, integrating weakly super-
vised loss, attention-based feature fusion, and self-confidence-
based late fusion at the pixel level. Their approach achieves
competitive results on nuScenes and SemanticKITTI bench-
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marks, showcasing its superior performance. Rong et al. [28]
introduce a novel framework for 3D semantic segmentation of
aerial photogrammetry models, leveraging orthographic pro-
jection to enhance efficiency without compromising precision.
Their approach is versatile and applicable across various types
of models in the field.

C. Transformer and self-attention

Bahdanau et al. [29] propose a class attention mecha-
nism for simultaneous translation and alignment in machine
translation, which is widely recognized as the first work to
apply attention to natural language processing. Later, Lin et
al. [30] propose and apply the self-attention mechanism to
the visualization and interpretation of statement embeddings.
Building on the self-attention mechanism, Vaswani et al. [31]
propose the Transformer model for machine translation. The
Transformer model is solely based on self-attention, without
using recurrent neural networks or convolutional operators.
Since its inception, Transformer has achieved excellent results
in many natural language processing problems. Compared to
previous methods, it trains faster and establishes more effec-
tive long-distance dependency relationships. The Transformer
model has also inspired the development of many pre-training
models, including BERT proposed by Devlin et al. [32]. BERT
uses a bidirectional Transformer to pre-train deep bidirectional
representations by jointly adjusting the left and right contexts
at all levels. BERT achieves first place in all 11 natural lan-
guage processing tasks and has received tremendous feedback
in the field. Encouraged by Transformer and BERT, many
excellent methods have been proposed to further extend the
Transformer framework, such as Transformer XL [33] and
BioBERT [34].

Given the remarkable success of self-attention mechanisms
in natural language processing, researchers have begun to
explore their potential application in two-dimensional com-
puter vision. Before introducing of self-attention mechanisms
into two-dimensional vision, convolutional neural networks
were one of the major frameworks dominating the field.
Researchers initially attempted to incorporate self-attention
layers into convolutional neural networks to capture long-
distance relationships, such as in GCNet [35] and Jie et
al. [36]. Other researchers attempt to abandon the mainstream
convolutional neural network architecture and instead use
purely self-attention mechanisms, such as Parmar et al. [37],
Hu et al. [38], and Zhao et al. [39]. The Vision Transformer
(ViT) proposed by Dosovitskiy et al. [40] further extends
this pure self-attention architecture to large-scale pre-training,
achieving optimal results in many two-dimensional tasks.
ViT’s excellent results suggest that, just as pure self-attention
methods outperform traditional recurrent neural networks in
natural language processing, pure self-attention mechanisms
can also outperform traditional convolutional neural network
architectures in two-dimensional vision. Currently, ViT has
become a landmark method in two-dimensional vision algo-
rithms.

With the remarkable success of self-attention mechanisms
in both natural language processing and two-dimensional
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Fig. 2. Our method takes the original mesh model as input, followed by several units, each containing three different modules. In each unit, the input model
is the output of the former unit, and firstly, K-means clustering is conducted on the input model. Based on the clusters, attention is assigned to each face via
a transformer module, and lastly, the model is nonuniformly downsampled according to the attention. We select the faces to be deleted based on the attention
value, and then perform an edge collapsing operation to the shared edge of two faces with the smallest attention (colored in red) and modify the adjacent

faces based on the newly generated vertex (colored in red).

computer vision, researchers have naturally sought to extend
them to three-dimensional shapes. However, unlike statements
in natural language processing that have a natural order and
pixels in two-dimensional images that have an up, down,
left, and right order, point clouds and mesh models in three-
dimensional shapes lack orderliness. Therefore, solving the
disorder problem has become crucial in applying self-attention
mechanisms to three-dimensional shapes. In 2021, Guo et
al. [41] propose the Point Cloud Transformer (PCT), which is
the first to apply self-attention mechanisms to 3D point clouds.
The PCT successfully solves the problem of point cloud
disorder by using input embedding based on 3D coordinates,
providing great inspiration for the field of 3D point clouds.
Subsequently, Zhao et al. [42] propose the Point Transformer,
which uses coordinate differences between vertices to design
learnable position encoding. Both methods utilize the order
invariance of point clouds and employ farthest point sampling
and nearest neighbor search.

III. OUR METHOD

In this section, we will introduce the details of our method.
As shown in Figure 2, our method consists of three modules,
including face clustering, attention, and nonuniform downsam-
pling, with an overall loop of four times. After these steps, our
output is a mesh model downsampled based on our trained
attention, and then we conduct segmentation on this mesh
model. Finally, we perform an upsampling operation with
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reference to previous downsampling paths and get the final
predicted labels for the original model.

In the following, we introduce the details of each module
in our segmentation pipeline. Section III-A and Section III-B
describe the details of face clustering and attentive nonuniform
down-sampling modules, respectively. Section III-C explains
the upsampling unit, and Section III-D concludes the overall
process of our algorithm.

A. Clustering module

Clustering is a classical machine learning problem that
involves segmenting a series of unlabeled data into different
classes or clusters according to specific criteria. In our cluster-
ing module, we focus on dividing faces in mesh models into
different clusters.

Given a 3D mesh model M {V,E,F}, where V
represents vertices, F represents edges, and F' represents faces,
we firstly calculate the feature vector x; for each face f;. By
using the feature vector x; of each face, we can cluster the
faces using a simple K-means clustering algorithm to obtain
a label for each face. Faces with the same label belong to the
same cluster.

During the downsampling process, excessive consumption
of global feature calculations can impede efficiency. Therefore,
we use local information features as feature descriptors to
reduce computational complexity. Specifically, we select the
length of three edges of each face, namely a,b, ¢, to encode
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the geometric information of the triangular face. In order to
eliminate the impact caused by different orders of edges, we
use the edge-encoded vector (a + b + ¢, ab + bc + ca, abe)
which is circulant symmetric and at the same time able to solve
the value of a,b and c. Furthermore, we add three additional
feature descriptors, including GC, SDF, and AGD to form the
feature vector.

B. Attentive downsampling module

The attentive downsampling module is designed to down-
sample 3D models while retaining essential information, mak-
ing it a critical component of many 3D shape processing
pipelines. The module comprises two distinct parts: the at-
tention module and the downsampling module. The attention
module is responsible for identifying the most informative
faces in a given mesh model, while the downsampling module
reduces the number of faces in the model while retaining the
relevant information. The attention module uses an attention
mechanism to automatically assign weights to each face based
on its importance to the overall shape of the mesh model. The
weights of the faces are then used to guide the downsampling
process, ensuring that the most informative faces are retained.

The attention module assigns importance weights to in-
dividual faces in a mesh model. The primary task of the
attention module is to calculate attention values for each
face, which is accomplished using a transformer-based training
approach. Our methodology involves generating a sequential
arrangement of patches based on the clustering order of the
faces, which serves as input to the attention module. This
approach enables us to customize the attention values across
the faces, ensuring they are processed and analyzed appro-
priately. Specifically, the transformer-based training approach
uses self-attention mechanisms to calculate attention values
for each face. During training, the model learns to weigh the
importance of each face based on its contribution to the overall
shape of the mesh model. The attention module can effectively
capture important features and retain essential information
while downsampling the mesh model. The transformer-based
attention module can be represented by the following equa-
tions.

(Q?K’V):X'(WQ7WK7WV)7 (1)
A=Q- KT, 2
- A
A= —r| 3
Vir )
A = Softmax(A), )

where Wq, Wi, Wy represents learnable parameter matrix,
X represents the input feature matrix, dr is the dimension of
input features.

To achieve nonuniform sampling in the attentive down-
sampling module, we use the attention values generated in
the attention module to sort each face in the mesh model
from small to large. Specifically, we select the face with
the smallest attention value, and then choose the adjacent
face with the smallest attention value from the three faces
that share an edge with the selected face. We then perform
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Attentive Edge

Collapsing

Fig. 3. The sketch of the attentive edge collapsing process. As shown in
the sketch, the attention value of each face is noted as att;, and we assume
att; < att; if ¢ < j. Two faces are shown in the image, and the edge cd
color in red is the shared edge, which is to be collapsed. A new vertex e is
formed in the midpoint of cd, and vertices a and b are connected to the new
vertex.

attentive edge collapsing on these two faces and their adjacent
edge, which eliminates the two selected faces. This process
is repeated iteratively until the desired number of faces is
reached. Figure 3 illustrates this process, where att; represents
the attention score of each face, and assuming att; < att; if
1 < j. From all the faces, we select the one with the least
attention, which is face abc. We then select the surrounding
face bed with the smallest attention value, and collapse the
shared edge bc into one newly generated point e, resulting
in the elimination of the two selected faces. This process
is repeated iteratively until the desired number of faces is
reached. Using attention values to guide the downsampling
process in this manner allows for nonuniform sampling, where
the most informative faces are retained while the number of
faces is reduced.

The attentive edge collapsing operation is iteratively applied
until the number of downsampled faces reaches half of the
total faces in the input model. The resulting downsampled
3D model then serves as the input for the subsequent pro-
cessing unit. The progression of our downsampling operation
is visually represented in Figure 4, which shows the gradual
reduction in the number of faces while preserving critical
features based on their attention values. The upper row of
the figure shows the uniform downsampling procedure, while
the lower row shows our attentive nonuniform downsampling
procedure. In the figure, the shade of red represents the
attention values of each face, where a darker shade of red
indicates a higher attention value, and a lighter shade of red
indicates a lower attention value. The figure shows that during
the uniform downsampling process, the attention distribution
on the model is relatively broad, and not all are concentrated
in the detailed parts or boundary parts. In the nonuniform
downsampling process, the high attention values are mainly
distributed at the detailed parts and boundary parts, which
allows our method to preserve more faces in these areas
during the downsampling process. At the same time, it can be
observed that during the nonuniform downsampling process,
the attention distribution becomes increasingly concentrated
as the downsampling progresses, which also proves that our
nonuniform downsampling process effectively preserves the
necessary information.

The above three modules, the clustering module, attention
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Uniform
Downsampling

Nonuniform
Downsampling

(a) (b)

Fig. 4. Comparison between uniform and nonuniform downsampling processes. The upper ones are those performing uniform downsampling, and the lower
ones are performing nonuniform downsampling. The original mesh model contains approximately 24000 faces in total, and models (a), (b), (c), and (d) show
the result of the downsampled model to the number of faces of around 12000, 6000, 3000, and 1500, respectively. The heat map colors on each model
represent the high and low attention values, with darker red indicating larger attention values. It can be seen that in the attentive nonuniform downsampling
process, higher attention values are more focused on parts which are more detailed or on the boundary, whereas in uniform downsampling, attention distribution

is more dispersed.

module, and downsampling module, are sequentially combined
as a unit, and the final downsampled mesh model is obtained
by cycling N times as a whole. In this paper, we experimen-
tally set NV = 4. An ablation study about different choices of
the value of N can be found in Section IV-C.

C. Upsampling unit

After performing four cycles of attentive nonuniform down-
sampling, we obtain a downsampled 3D model. Subsequently,
a final clustering operation is executed on this downsampled
model to assign labels to each face. To reintegrate these labels
into the original model, we perform an inverse operation by
retracing the steps of the previous downsampling path. Specif-
ically, we perform attentive edge expansion, which involves
the addition of new faces to the downsampled model by
inverting the attentive edge collapsing operation used during
downsampling. This process is performed iteratively until
we restore the original model. Finally, we assign the labels
obtained from the final clustering operation to each face in the
original model, providing a complete and labeled 3D model.

The attentive nonuniform downsampling technique has
unique characteristics that distinguish it from other downsam-
pling techniques and make it an effective approach for preserv-
ing the local structure of 3D meshes during the downsampling
and upsampling phases of mesh processing. Specifically, the
attentive nonuniform downsampling technique ensures that
when faces are collapsed during downsampling, they are
predominantly located within each cluster rather than at the
intersections between clusters. As a result, during the upsam-
pling phase, the labels of newly generated faces can be directly
assigned based on the labels of their surrounding faces, which
are likely to be within the same cluster. However, in cases
where there are discrepancies among the labels of surrounding
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faces, a voting mechanism is employed to determine the labels
for the newly generated faces. This approach capitalizes on
the inherent spatial coherence within clusters, leveraging the
localized nature of nonuniform sampling to accurately infer
the labels of faces during the upsampling process.

D. Algorithm

Our algorithm is trained and tested on each category of 3D
shapes, which can be summarized as Algorithm 1.

IV. EXPERIMENTS

This section presents the experimental results of the pro-
posed method and provides a comparative analysis with
current state-of-the-art approaches. Additionally, a series of
ablation experiments are conducted to validate the efficacy
and rationality of the proposed approach. The experimental
results demonstrate the superior performance of the proposed
method, and the ablation experiments provide insights into the
key components of the approach that contribute to its success.

A. Experimental Setting

Dataset. We employ the Princeton Segmentation Bench-
mark [43] (PSB), the COSEG benchmark [44], and the Human
Body Dataset proposed by [45] in the experiments to evaluate
our algorithm. PSB and COSEG are the two most popular
datasets for benchmarking 3D shape segmentation algorithms.
The PSB dataset contains 19 categories, with 20 models for
each category. We remove the three categories of bust, bearing,
and mech because the models in these categories lack consis-
tent semantic labels. The small dataset of the COSEG contains
shapes for eight classes, and the large dataset consists of three
classes. The Human Body Dataset is a newly constructed and
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Algorithm 1 3D Shape Segmentation via Attentive Nonuni-
form Downsampling

Inputs: Training 3D shapes and human-assigned labels for all
faces.

Qutputs: Predicted label for each face on test 3D shapes.

1: For each input 3D shape, calculate the feature vectors of
each face, including the triangle’s inner angle, edge-length
ratio, and feature descriptors GC, SDF, and AGD;

2: repeat

3:  Conduct K-means clustering operation to all faces using
the feature vectors;

4:  Generate face sequences based on clustering results and
calculate the attention value of each face through the
transformer module;

5. Starting from the face with the smallest attention, select
one face at a time and conduct an attentive edge
collapsing between the face selected and one of the
adjacent faces with the smallest attention. Repeat until
the total number of faces is half of the input 3D shape;

6: until Iteration over.

7: For the output 3D shape, calculate the feature vectors for
each face and cluster them. Perform the inverse operation
according to the path of each nonuniform downsampling,
assign labels to the upsampling generated faces based on
the clustering labels of the surrounding faces, until the 3D
shape is restored to the original 3D model;

8: Smooth the segmentation results using graph-cuts.

9: return All labels of clustered faces.

TABLE I
THE ACCURACY OF SEGMENTATION RESULTS FOR EACH CATEGORY
OF 3D SHAPES IN PSB DATASET COMPARED WITH THREE OTHER
METHODS, INCLUDING SHAPEPFCN [9], MESHCNN [46], AND
MESHWALKER [26], ON THE PSB DATASET.

Category \ ShapePFCN  MeshCNN  MeshWalker Ours
Cup 93.70% 95.86% 99.54% 99.39%
Table 99.30% 96.78% 99.33% 99.47 %
Teddy 96.50% 84.29% 95.57% 97.80%
Bird 86.30% 68.09% 92.76 % 92.09%
Hand 88.70 % 68.83% 83.31% 88.61%
Fish 95.90% 89.05% 94.58% 96.18 %
Human 93.80% 74.76% 87.02% 94.31%
Glasses 96.30% 93.94% 96.11% 96.94 %
Airplane 92.50% 84.36% 96.20% 96.93 %
Ant 98.90 % 91.83% 97.36% 98.66%
Chair 98.10% 84.75% 97.61% 98.72%
Octopus 98.10% 98.21% 97.86% 98.05%
Plier 95.70% 83.69% 92.24% 96.51%
Armadillo 93.30% 50.24% 89.12% 93.85%
Vase 85.70% 68.94% 84.56% 87.03%
FourLeg 89.50% 68.73% 80.93% 90.10%
Average ‘ 93.89% 81.40% 92.76% 95.29%

recently popular dataset formed by 381 training models and
18 testing models. The division of the training and validation
sets for PSB is referenced from [5]. We take 12 models as the
training sets for each category and the rest as the validation
sets.

Experiment details. We implement our algorithm in Python
and Matlab. In our network, the initial weights are set to
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TABLE II
THE ACCURACY OF SEGMENTATION FOR EACH CATEGORY OF 3D
SHAPES IN THE SMALL COSEG DATASET COMPARED WITH THREE
OTHER METHODS, INCLUDING SHAPEBOOST [4], MESHCNN [46],
AND SHAPEPFCN [9].

Category ‘ ShapeBoost MeshCNN  ShapePFCN Ours
Candelabra 85.50% 83.52% 95.40 % 93.40%
Chairs 94.80% 92.87% 96.10% 96.64 %
Fourleg 92.30% 86.19% 90.40% 93.37%
Goblets 97.00% 92.62% 97.20% 97.92%
Guitars 97.70% 91.34% 98.00 % 97.85%
Irons 87.20% 81.26% 88.00% 88.69%
Lamps 76.30% 83.64% 93.00% 92.41%
Vases 86.40% 77.43% 84.80% 88.13%
Average | 89.65% 86.11% 92.86% 93.55%

variables subject to a Gaussian distribution with a variance
of 0.001 and a mean of zero. The optimizer is Adam, with
a learning rate of 0.001. Our algorithm runs on a single
NVIDIA GeForce RTX 3090 GPU. With the consumption of
shape preprocessing, for each model with 20K-30K faces, our
algorithm needs 10 minutes for training and 30 seconds for
evaluation.

B. Results and Comparison

In this study, we conduct experiments to evaluate the per-
formance of our proposed method. To assess the effectiveness
of our method, we use the widely adopted metric in the field.
Similar to Guo et al. [5], we use the following segmentation
accuracy metric to evaluate the performance of our approach:

Accuracy = Ztiu L)/ Zti’ ®)

i€T €T

where T is the face set of the testing 3D shapes, ¢; is the area
of the face 4, and [; is the predicted label of face i. u(l;) is
equal to 1 if the prediction is correct, otherwise, it is 0.

Table I presents the accuracy of our method on the PSB
dataset. Table II shows the accuracy of our method on the
COSEQG dataset, and the accuracy on the Human Body dataset
is presented in Table III. We obtain an average accuracy of
95.29% on the PSB dataset, 93.55% on the small COSEG
datasets respectively, and 93.12% on the Human Body dataset.
Figure 5, Figure 6, and Figure 7 show some samples of the
segmentation results of our method on the PSB, COSEG,
and Human Body datasets, respectively. Figure 8 shows the
comparison between the segmentation results of our method
and the ground truth. It can be seen that our segmentation
results are very close to the ground truth.

Furthermore, we visually compared our method with
MeshCNN [46] and Guo et al. [5], as shown in Figure 9. In
the figure, we visually compared our method with MeshCNN
and Guo et al’s method on a Fourleg model with more
detailed information and a Hand model with many small
boundaries. It can be seen that our method outperforms the
other two methods in both segmenting detail parts of models
and processing boundary parts of models, proving the superior
performance of our method.
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TABLE III
THE ACCURACY OF SEGMENTATION ON THE HUMAN BODY DATASET COMPARED WITH SIX OTHER METHODS, INCLUDING MARON ET AL. [45],
DIFFUSIONNET [47], FIELD CONVOLUTIONS [48], HODGENET [49], MDGCNN [50] AND PFCNN [51].

Method | Maron et al. DiffusionNet Field Convolutions HodgeNet MDGCNN PFCNN Ours
Accuracy | 88% 90.80% 92.90% 85.03% 89.47% 91.79% 93.12%
¢ (
4 1) N —
y, —
) /'\

Fig. 5. The samples of segmentation results on the PSB dataset.
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|
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Fig. 6. The samples of segmentation results on the COSEG dataset.

Our experimental results show that our proposed method
achieves accuracy levels that outperform state-of-the-art al-
gorithms in most categories, highlighting its superior perfor-
mance compared to other methods.

C. Ablation studies

The key idea of our algorithm is to perform attentive
nonuniform downsampling on three-dimensional shapes to
obtain more accurate segmentation results. Thus, our ablation
experiments include three aspects.
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TABLE IV
THE COMPARISON BETWEEN ACCURACY OF SEGMENTATION
USING NONUNIFORM DOWNSAMPLING ,UNIFORM
DOWNSAMPLING AND WITHOUT DOWNSAMPLING.

Category \ Nonuniform  Uniform  Without downsampling
Human 94.31% 91.74% 89.20%
Teddy 97.80% 95.57% 92.65%
Airplane 96.93% 95.79% 92.48%

Firstly, to verify the effectiveness of nonuniform downsam-
pling, we conduct ablation study among nonuniform down-
sampling, uniform downsampling and without downsampling.
The nonuniform downsampling module was replaced by a
uniform downsampling module that does not rely on attention
for testing to generate results of uniform downsampling. The
segmentation results of without downsampling is formed by
deleting the attentive module as well as the downsampling
module, and segment only using the features. The samples
of results compared with ground truth are shown in Fig-
ure 10, and the quantitative results are shown in Table IV.
These results show the advantage of our proposed nonuniform
downsampling, especially in regions of junctions of different
segments. Compared to the method without downsampling,
nonuniform downsampling helps achieve better segmentation
results because, during the nonuniform downsampling process,
our method folds patches with low attention values and applies
more attention to more important patches, such as small
parts and intersections. Therefore, our method can improve
the segmentation results in these parts, leading to an overall
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Fig. 7. The samples of segmentation results on the Human Body dataset.
) '& ﬁﬁ‘ W (D//

Fig. 8. The comparison on the PSB dataset between our segmentation result ("Ours” in the image) and the ground truth ("GT” in the image).

Guo et al. MeshCNN Ours

Fig. 9. The comparison of segmentation results among our method, MeshCNN [46], and Guo et al. [5]. Our method outperforms the other two methods in
detailed areas and boundary segmentation.
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Fig. 10. The comparison of segmentation results among ground truth ("GT” in the image), uniform downsampling, nonuniform downsampling, and without
downsampling.

Uniform
Downsampling

100.00% 100.00% 100.00%
97.50%
95.00% 97.50%
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1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Human Teddy Airplane

Fig. 11. The comparison of segmentation accuracy with different numbers of iterations and different downsampling ratios in each iteration. The horizontal
axis represents the number of cycles, and the vertical axis represents the accuracy. The color of lines in the figure shows the ratios of downsampling in each
iteration.
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Fig. 12. The comparison of segmentation results using different combinations
of feature descriptors. (a) represents using edge-encoded vector only. (b)
represents edge-encoded vector, and GC. (c) represents edge-encoded vector,
GC, and SDF. (d) represents edge-encoded vector, GC, SDF, and AGD.

improvement in segmentation accuracy.

Secondly, in order to verify the impact of the downsampling
ratios as well as the number of cycles on the segmentation
results, we used different ratios and numbers of cycles (V)
for training and testing, and obtained the results shown in
the figure based on the segmentation accuracy. From the
change in segmentation accuracy, as shown in Figure 11, it
can be seen that for the same downsampling ratio, accuracy
generally increases gradually with the number of iterations.
However, when the number of iterations reaches a certain level,
it becomes slower or even shows a downward trend. This is
because for some details, downsampling to a small number of
faces can lead to the loss of necessary detailed information,
which to some extent affects the final segmentation effect. For
different downsampling ratios, it can be seen from the ablation
experiment that the larger the downsampling ratio, the better
the effect after a single cycle. However, as the number of
cycles increases, the total number of faces gradually decreases,
and the segmentation accuracy shows different changes. We
think the reason is that if the downsampling ratio is too large,
the number of faces decreases sharply, and information is
lost during the iteration process. If the downsampling ratio
is too small, fewer faces are eliminated in each iteration, and
the convergence speed slows down. Therefore, we choose a
downsampling ratio of 0.5 and a number of cycles of 4 as the
hyperparameters for the experiments in our paper.

Thirdly, to verify the optimality of clustering feature se-
lection, several sets of selected features were recombined
and tested. We design four different combinations of feature
descriptors totally. The first one is the edge-encoded vector.
The second one combines edge-encoded vector, and GC. The
third combines edge-encoded vector, GC, and SDF. The last
combines edge-encoded vector, GC, SDF, and AGD. Figure 12
shows evidence that using edge-encoded vector, as well as GC,
SDF, and AGD achieve the best performance. Thus, we believe
that using the combination of all features mentioned above
help express more express more aspects of geometric features
and lead to an improvement of segmentation results. We think
the possible explanation for the different effects of using
various feature descriptor combinations is as follows: each

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

feature descriptor focuses on different aspects of information,
and different feature descriptors might perform differently on
different categories of 3D shapes or even cause conflicts. More
specifically, the edge-encoded vector, which is obtained by
combining the lengths of three edges of a triangle, can only
represent features of the single triangular face, not providing
enough effective information for segmentation, therefore using
only the edge-encoded feature descriptor results in poorer
segmentation performance. GC mainly measures curvature
properties and can provide useful information in areas with
sharp edges or corners. Therefore, the segmentation results
from GC as the feature descriptor may not be satisfactory for
3D shapes in the category of Human and Airplane, which are
mostly smooth surfaces. In addition, there may be situations
in the Human category where curvatures are similar in the
parts of the arm and leg, which might cause mis-segmentation.
SDF captures the local thickness of an object near a point
on the mesh surface by measuring the distance from the
point on its relative surface. However, SDF may perform
poorly for details such as the junction of the fuselage and
wings in the Airplane category and the connection between
the torso and limbs in the Teddy category, leading to poor
segmentation results. The above feature descriptors mainly
focus on the local information of 3D shapes, while AGD
can provide global shape information of the entire model by
calculating the average geodesic distance from each point on a
shape’s surface to all other points. In the case where the above
feature descriptors depict local information, incorporating the
global information encoded by AGD can effectively improve
the performance of segmentation results. Therefore, one can
see that adding AGD to the feature descriptors leads to a
significant performance improvement.

V. LIMITATIONS AND FUTURE WORKS

Our algorithm currently faces some limitations. Firstly,
feature descriptors need to be computed for each face using
our algorithm, which requires the 3D shape to be manifold.
We plan on addressing this by extending our approach to non-
manifold shapes in the future. Secondly, the computational
cost of using our proposed attentive nonuniform downsam-
pling network is relatively high. To mitigate this issue, we
will explore more efficient network architectures in our future
work.

VI. CONCLUSION

In this paper, we propose a novel algorithm for segment-
ing 3D shapes by incorporating the concept of attentive
nonuniform downsampling. The complexity of 3D shapes is
a pervasive issue, particularly in the conjunctions of different
parts of shapes where faces tend to be smaller and denser and
thus require more attention. Previous methods have treated
all faces equally in every mesh model, whereas our method
implements nonuniform downsampling and an attention mod-
ule that assigns attention to each face in the model, leading to
attentive edge collapsing concerning the attention of each face.
The experimental results on PSB, COSEG, and Human Body
benchmarks demonstrate that our approach surpasses previous
methods.
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