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3D Shape Segmentation with Potential Consistency
Mining and Enhancement
Zhenyu Shu, Shiyang Li*, Shiqing Xin, and Ligang Liu

Abstract—3D shape segmentation is a crucial task in the field
of multimedia analysis and processing, and recent years have
seen a surge in research on this topic. However, many existing
methods only consider geometric features of 3D shapes and fail
to explore the potential connections between faces, limiting their
segmentation performance. In this paper, we propose a novel
segmentation approach that mines and enhances the potential
consistency of 3D shapes to overcome this limitation. The key
idea is to mine the consistency between different partitions
of 3D shapes and to use the unique consistency enhancement
strategy to continuously optimize the consistency features for
the network. Our method also includes a comprehensive set
of network structures to mine and enhance consistent features,
enabling more effective feature extraction and better utilization
of contextual information around each face when processing
complex shapes. We evaluate our approach on public benchmarks
through extensive experiments and demonstrate its effectiveness
in achieving higher accuracy than existing methods.

Index Terms—3D shape segmentation, Consistency, Deep learn-
ing, Shape analysis

I. INTRODUCTION

THe task of 3D shape segmentation is a fundamental
and challenging problem in multimedia analysis and

processing with wide-ranging practical implications. It entails
the assignment of correct classification labels to individual
components of a 3D shape’s faces. This process has diverse ap-
plications, including but not limited to 3D shape modeling [1],
shape retrieval [2], and skeleton extraction [3]. Furthermore,
the concept of 3D shape segmentation can be a source of
inspiration for certain object detection innovations [4], [5].

Before the advent of deep learning techniques, 3D shape
segmentation methods relied on hand-crafted feature descrip-
tors to represent each face of a 3D shape as a feature vector. By
clustering these feature vectors in feature space, corresponding
labels could be assigned to faces. The combination of multiple
descriptors has been widely adopted to enhance performance
during the segmentation of 3D shapes and overcome the
limitations of a single feature descriptor. However, the efficacy
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Fig. 1. Example segmentation results of our method.

of these methods is still limited by their ability to extract
features and handle the complexity of 3D shapes.

The application of machine learning in 3D shape segmen-
tation has been found to significantly enhance the ability of
algorithms to extract features, leading to improved segmenta-
tion performance, such as [6] and [7]. Recent advancements in
deep learning have further improved the capability of feature
extraction. For instance, Guo et al. [8] employed convolutional
neural networks to process matrices generated from geometric
features, achieving satisfactory segmentation results. Similarly,
MeshWalker [9] utilized recurrent neural networks for random
walks on 3D meshes to segment 3D shapes, achieving state-
of-the-art performance. Despite the significant improvement
in segmentation accuracy, these methods primarily focus on
geometry information, such as dihedral and internal angles,
without fully exploiting the potential consistency of 3D shapes.

In comparison to the previously studied methods, our pro-
posed approach presents a pioneering innovation in feature
extraction for 3D shapes. Unlike the conventional practice
of relying solely on geometric features on the surface, our
approach emphasizes potential consistency within the 3D
shapes. This consistency, when mined, enables our network
to differentiate between the various partitions in 3D shapes
more effectively. For labeling faces, we employ a basic deep-
learning network while incorporating various strategies for
processing diverse faces. These strategies facilitate the priori-
tization of data consistency while simultaneously assimilating
contextual information from neighboring local faces. Sample
results of our approach can be seen in Figure 1.

The main contributions of this paper are as follows:

• A novel strategy is proposed to mine and enhance the
potential consistency of the 3D shape itself, which can
significantly improve the network’s ability to learn 3D
shape features. Meanwhile, we design a learning network
that can effectively use this consistency enhancement
strategy to dynamically mine potential features in data
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to obtain more precise segmentation results.
• Extensive experimental results on publicly available

benchmarks show that our method performs significantly
better than the state-of-the-art approaches.

The rest of the paper is organized as follows. In Section II,
we review recent works on 3D shape segmentation. In Sec-
tion III, we elaborate on our consistency enhancement strategy
and the structure of our network. We present the results of
experiments used to demonstrate the validity of our method
in Section IV. Section V summarizes the limitations of the
current work and the prospects for the future. We conclude
this paper in Section VI.

II. RELATED WORK

3D shape segmentation is a fundamental component of
multimedia analysis and processing, involving the semantic
labeling of faces within individual parts of a 3D shape.
In this section, we present a comprehensive review of 3D
shape segmentation methods, which are categorized into three
groups: traditional, unsupervised, and supervised segmentation
methods. By conducting a detailed analysis of each method’s
strengths and limitations, we provide a more in-depth overview
of the 3D shape segmentation techniques.

Traditional 3D shape segmentation methods and unsu-
pervised 3D shape segmentation methods. The segmenta-
tion of 3D shapes has traditionally relied on mathematically
defined geometric features. Early approaches to 3D shape
segmentation, as categorized in [10], include methods such
as hierarchical clustering [11], iterative clustering [12], re-
gion growth [13], boundary segmentation [14], watershed
segmentation [15], and medial axis transform [16]. Among
these, the clustering-based method [17], [18] is characteristic,
dividing the 3D shape based on the clustering result of the
corresponding feature vector of each 3D shape in feature
space. Region growing is another segmentation technique,
whereby some faces or vertices are placed as seeds on each
part of the 3D shape and allowed to spread around until the
entire 3D shape is segmented. Based on topological theory,
Watershed segmentation is particularly effective for detecting
weak edges that are less obvious in 3D shapes. These methods
form the basis of many state-of-the-art approaches to 3D shape
segmentation.

Semi-supervised 3D shape segmentation methods. Recently,
there has been a growing interest in semi-supervised seg-
mentation methods for 3D shapes, alongside traditional tech-
niques. Researchers have proposed innovative approaches to
overcome the challenges of segmenting complex 3D shapes.
For example, Sidi et al. [19] utilize spectral clustering and
diffusion mapping to establish the relationship between faces
during the 3D shape segmentation process, while Zhuang et
al. [20], [21] employ mesh embedding and correlation clus-
tering methods to achieve semi-automatic alignment of mesh
boundaries with ridge and valley lines. In another study, Wu et
al. [22] leverage a patch-based segmentation method followed
by spectral clustering in descriptor space, resulting in an
improved unsupervised segmentation outcome. Furthermore,
Zhang et al. [23] propose a novel unsupervised segmentation

method based on face-level descriptors and soft clustering.
The findings from these studies significantly advance 3D
shape segmentation and provide valuable insights for future
research. Yu et al. [24] propose a novel deep learning model
for hierarchical segmentation of 3D shapes, based on top-
down recursive decomposition and recursive neural networks,
which segments a 3D shape into an arbitrary number of
parts, achieves state-of-the-art performance on public and new
benchmarks for fine-grained and semantic segmentation, and
can be applied for fine-grained part refinements in image-to-
shape reconstruction.

Supervised 3D shape segmentation method. The supervised
3D shape segmentation techniques have gained considerable
notoriety in recent years due to their capacity to establish a
mapping relationship between features and labels through prior
knowledge. These methods have several beneficial factors.
The increasing completeness of the 3D shape repository has
provided a strong data foundation for supervised 3D shape
segmentation, and the continuous evolution of machine learn-
ing and deep learning has further propelled the field of 3D
shape segmentation. All these factors have contributed to the
superior performance of supervised 3D shape segmentation
over traditional and unsupervised methods.

Kalogerakis et al. [25] propose a learn-based 3D shape
segmentation method for the first time in the field of 3D shape
segmentation. The proposed approach involves classifying and
labeling the mesh and optimizing the loss function parameters
based on the CRF model. Similarly, Kaick et al. [26] propose
a method which considers the geometric similarity between
3D shapes and introduces an objective function composed of
multiple loss terms to learn the data features of the mesh.
This method effectively utilizes geometric features and ensures
smooth transitions between different areas.

Several supervised learning methods for 3D shape seg-
mentation that rely on geometric description features have
been proposed [27], [28], [29], [30]. These methods exhibit
improved performance and rely on hand-crafted feature de-
scriptors, such as mean geodesic distance(AGD) [31] to rep-
resent global position information, the shape diameter function
(SDF) [3] to distinguish the fat and thin parts of 3D shapes by
measuring the diameter of local facial shapes, and the Gaussian
curvature (GC) to represent the curvature of each vertex in 3D
shapes. Xie et al. [7] try to use extreme learning machines in
the field of 3D shape segmentation. The application of 3D
shape segmentation in deep convolutional networks originates
from the method of Guo et al. [8], which uses a 2D matrix
composed of feature descriptors as training data. Zhu et al. [32]
present an efficient point cloud segmentation method based on
prototypes for bias rectification by reducing the distribution
distance between the support set and query set features. Apart
from the algorithms that rely on feature descriptors, there are
excellent methods that do not use feature descriptors. The
method proposed by Wang et al. [33] is different from the
previous methods using feature descriptors. It uses projection
to introduce the semantic segmentation of 2D images into the
segmentation of 3D shapes. Besides, Kalogerakis et al. [25]
also use an image-based 2D segmentation network to label
the projection and achieve a good effect in segmenting 3D
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Fig. 2. The overview of our algorithm, which mainly contains four steps. 1) Sample faces on 3D shapes. 2) Cluster the feature vectors, and obtain the partition
of 3D shape. 3) Add constraints for consistency to the network based on partitions of the 3D shape. 4) Update the feature vector for the next iteration, and
send the optimized feature vector to the consistency mining module. The corresponding label of the face is the output of our network.

shapes. Le et al. [34] use RNN in segmentation tasks and
make innovations in data format, inputting multiple sequences
composed of 2D projections transformed from 3D shapes
into RNN networks. Similarly, MeshWalker [9] also uses the
sequence input RNN network for segmentation. The difference
is that the sequence used by MeshWalker is generated by
random walking on the surface of the mesh. Guo et al. [35]
introduce Point Cloud Transformer, a novel framework based
on Transformer for point cloud learning, which addresses the
challenges of designing deep neural networks for point cloud
processing due to the irregular domain and lack of order. Han
et al. [36] propose a novel point cloud segmentation method
by capturing much richer contextual dependencies semanti-
cally from the perspective of position and channel. Weng et
al. [37] present a plane-assisted module by enhancing semantic
segmentation of touching objects and large surface objects in
point clouds. Wu et al. [38] propose a comprehensive intra-
and cross-modal contrastive learning method for segmenting
3D point clouds by combining rich learning signals from point
clouds and rendered images.

Unlike the above methods, our method focuses on mining
the potential features of the 3D shape itself and leveraging
them to enhance the network’s performance by strengthening
the capacity to understand and extract the consistency of the
features. Notably, our approach integrates an innovative strat-
egy for mining and enhancing data consistency that considers
the contextual relationships and local scale information among
faces, thereby playing an original role in this field.

III. OUR METHOD

Our algorithm’s general overview is outlined in Figure 2.
In our method, feature descriptors that capture semantic in-
formation from various perspectives are employed to encode
the characteristics of the 3D shape. Initially, a preliminary
partition of the 3D shape is generated to ensure that most faces
within each partition share the same label. With the prelim-
inary partition, our network, which comprises two functional
modules, including the consistency mining module and the

consistency enhancement module, subsequently introduces a
training constraint to enforce consistent and accurate labeling
of the partitioned results. It is worth noting that the partition
would undergo optimization throughout the training iterations.
After the network assigns the corresponding label to each face,
the graph-cut algorithm is used to refine the segmentation
results further. A detailed description of our algorithm is
introduced in the following.

A. Consistency mining module

The objective of the consistency mining module is to
generate partitions of 3D shapes that exhibit a strong label
consistency among the samples in each partition. Depending
on this module’s effect, the other module we proposed in our
algorithm, the consistency enhancement module, employs ro-
bust constraints during the training process, thereby enhancing
the overall labeling accuracy and minimizing any potential
inconsistencies.

As described in Figure 2, in the beginning, our algorithm
employs the k-means clustering algorithm to initially over-
segment the input 3D shape. To ensure the reliability of
the initial partition, five feature descriptors, including shape-
diameter function (SDF), Gaussian curvature (GC), average
geodesic distance (AGD), scale-invariant heat kernel signature
(SIHKS, [39]), and wavelet kernel signature (WKS, [40]), are
selected and used to extract feature vectors. The AGD, SDF,
and GC descriptors yield one-dimensional geometric features,
while WKS and SIHKS produce 19-dimensional and 100-
dimensional vectors, respectively. These feature vectors are
concatenated into a 122-dimensional feature vector for each
face.

The effectiveness of the consistency constraints imple-
mented by the consistency enhancement module relies on the
accuracy of partitions generated by the consistency mining
module. Therefore, it is essential to ensure the accuracy of
partitioning. We propose a learnable segmentation strategy that
ensures partition accuracy during network training. Specifi-
cally, after each training iteration, feature vectors generated
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Fig. 3. After receiving the partitions divided by the consistency mining
module, different strategies are adopted for the faces belonging to different
partitions, and the constraints for consistency are added to the network
according to different process strategies. After the labels are generated, the
optimized feature vectors would be passed to the consistency mining module
for subsequent iteration.

by the network’s last layer are selected as the feature repre-
sentation for each face. These vectors are then used to update
the feature vectors utilized in the clustering process of the
consistency mining module. Our self-optimizing segmentation
strategy establishes a two-way connection between the con-
sistency mining and enhancement modules, thus preventing
sample overfitting caused by one-way information propaga-
tion.

While our approach may appear similar to deep clustering,
it differs in that deep clustering combines clustering and
deep learning, but the connection between clustering and deep
learning is generally one-way and static. In deep clustering,
the clustering result is only used as additional information to
assist training and is not adjusted further during the network’s
training process. To ensure the success of deep clustering’s
training strategy, the clustering accuracy must be very high.
In contrast, our method enables dynamic adjustments to the
clustering process through feedback from the network opti-
mization iterations in the consistency enhancement module.
Our approach effectively integrates clustering into the super-
vised learning process, thereby improving accuracy in guiding
model learning and adjustment.

B. Consistency enhancement module
The purpose of this module is to regulate the training

process of the network. Our method leverages the partitioning
performed by the consistency mining module to add a con-
straint to the network, generating labels with solid consistency.
To achieve this, we introduce the concept of conditional
entropy as a constraint on the consistency between faces. In
our approach, we define conditional entropy as the expectation
of the entropy of the face F corresponding to the label Y, given
that the face is located in the partition Px. This definition
represents the uncertainty of the face category in a partition.
By adding this constraint to the loss function, we can enhance
the consistency of the faces in 3D shape by reducing the
uncertainty of the class to which the faces belong.

Figure 2 illustrates the detailed architecture of the consis-
tency enhancement module. Following the partitioning phase

by the consistency mining module, the module traverses the
adjacent faces of each face F in the triangular mesh to
identify their location in the partition. After identifying, the
treatment of the adjacent faces is divided into two cases: For
the faces located within the same region as per the partitioning,
the module does not perform any further processing, just
computing their conditional entropy, which is then integrated
into the loss function as a regularization term. The face situated
at the boundary between partitions is the second situation. This
kind of face plays a crucial role in improving the accuracy
of 3D shape segmentation, and we consider it a critical
factor in enhancing the model’s performance. The first step
in handling this type of face is to traverse the adjacent faces
of F. During traversal, the surrounding faces can be divided
into two sets. Set S1 consists of faces located in the same
partition with F according to the consistency mining module,
while set S2 comprises faces with different partitions from F.
Upon obtaining these two sets, we employ different processing
strategies for faces based on their distribution within each set.
Merely imposing constraints on network training based on
the proportion of faces in each set is not applicable to avoid
overfitting. Therefore, only when the difference between the
number of faces in S1 and the number of faces in each partition
within S2 exceeds a certain threshold, we add the conditional
entropy of the current partition’s face F as a regularization
term to the loss function. As a result, the network’s loss
function can be expressed as follows:

Loss = Lorigin + λHin + λHedge, (1)

Lorigin = −
∑
i

yi log pi, (2)

where Lorigin represents the cross-entropy loss of the network
itself, measuring the difference between the prediction of a
measurement model within a class of three-dimensional shapes
and the true labels of all classes, yi is the i-th element of the
real label, and pi is the i-th class probability predicted by
the model. Hin consists of the expectation of the conditional
entropy of the face within the partition, Hedge represents the
expectation of conditional entropy of the face on the marginal
part between partitions, and λ denotes their regularization
coefficient. The mathematical expressions of Hin and Hedge

are:

Hin = E(Fin,Y,A)[P (Y |Fin ∈ A)log(P (Y |Fin ∈ A))], (3)

Hedge = EFedge∈A[H
′], (4)

H ′ = P (Y |Z,Fedge ∈ A)log(P (Y |Z,Xedge ∈ A)), (5)

Z :
∑
i∈S1

Fi −
∑
j∈S2

Fj > µ. (6)

Among the above equations, condition Y represents the prob-
ability that the category of face F is the same as most
faces located in partition A. We use the expectation of H ′

to represent Hedge, where H ′ indicates conditional entropy
of the face on the marginal part between partitions, i.e., the
entropy of the situation where condition Y is satisfied under
condition Z. µ represents the threshold of the difference in
the number of faces between S1 and S2. Only the conditional
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Fig. 4. The detailed structure of the deep learning network. Initially, we generate a preliminary partition of the 3D shape. Subsequently, we will subject
consistency constraints to the training network. After each training epoch, the optimized vectors will be generated and passed to the next iteration. Throughout
the network’s training iterations, the updated partitions outcome by clustering gradually undergoes optimization. We employ the Transformer model in the
network block. The Transformer encoder takes feature vectors and encodes them into optimized vectors. The self-attention mechanism allows the model to
know the importance of each feature descriptor. The encoded embeddings are fed to the fully connected layer connected to softmax for classification. In
addition, the network framework in the network block can be replaced with other applicable networks, such as MLP or LSTM.

entropy of face F satisfying condition Z can be included in
the loss function.

The conformance constraint addition submodule is a sub-
module inside the consistency enhancement module. Figure 3
illustrates the detailed network structure of it. This submodule
is designed to add a constraint to the network. The optimized
feature vectors within the network are then transmitted to
the subsequent iteration of the consistency mining module to
partition the faces. Moreover, the deep network structure used
in the study is depicted in Figure 4. We employ the Trans-
former model in the network block to account for complex
relationships between input feature vectors. The Transformer’s
multi-head self-attention mechanism can simultaneously focus
on different parts of the input, facilitating the learning of more
complex features.

After training, the consistency processing strategy, which is
contained in the consistency enhancement module, is obtained
and can ensure consistent and accurate labels. Simultaneously,
this constraint-based approach enables the perception of con-
textual information from the surrounding faces of each face.
In traversing the faces around the target to establish a face set,
the local information around the target face is also extracted.
This context-aware module structure mitigates the risk of over-
fitting during the inclusion of training constraints.

C. Algorithm

The training and testing process of our segmentation method
is executed on each category of 3D shapes. The inputs and
outputs of each stage in our method and the operations
of each module within the network, can be summarized as
Algorithm 1.

Algorithm 1 Consistency mining and enhancement
Inputs: Training 3D shapes and human-assigned labels for all
faces
Outputs: Predicted label for each face on test 3D shapes
Training process:

1: Compute feature vectors for each face in training 3D
shapes using feature descriptors, including AGD, SDF,
GC, SIHKS, and WKS. Concatenate those feature vectors
into high-dimensional vectors;

2: repeat
3: Cluster the feature vectors, and obtain the updated

partition of 3D shape;
4: Add constraints for consistency to the network based

on partitions of the 3D shape through conformance
constraint addition submodule;

5: Train our network, shown in Figure 4, using the training
data prepared in Steps 1 and 3;

6: Update the feature vectors;
7: until Iteration over.

Testing process:
1: Compute feature vectors for each face in testing shapes;
2: Predict the probability distributions with the trained net-

work and obtain segmentation labels;
3: Employ the graph-cuts algorithm to the predicted results

for smoothing boundaries.

D. Network training

Some examples of segmentation results after each training
stage are shown in Figure 5. In summary, our network primar-
ily performs classification tasks. During network training, we
input feature vectors corresponding to each face. The output
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Fig. 5. The corresponding segmentation results after each training stage by using the intermediate-state network to predict and segment a testing shape. The
results in the first row represent the top view of the testing shape, and the other row is the bottom view. The final result is the refined one by using graph-cuts.

of the network is the classification results for each face in the
3D shape, representing the corresponding label for each face.
To address the total data required for training, we employ a
strategy that avoids feeding all faces into the network. This
strategy prevents the network from processing redundant and
similar faces. Specifically, we utilize uniform sampling to
select a representative subset of faces. The sampling ratio is
determined based on our processing strategy for partitioned
faces. Since each face needs to consider the surrounding
faces to establish constraints for consistency, and the local
information of the surrounding faces has already been incor-
porated through these constraints, including the surrounding
faces as training samples would lead to duplicated training
data. Thus, we set the sampling range to 1/2 to reduce the
training burden of the network. Furthermore, our customized
loss function for the network is described in Section III-B.
After the network, we employ the graph-cut algorithm [41],
commonly used in shape segmentation [8], [42], [43], to
optimize our segmentation results further. This additional step
enhances the accuracy and refinement of the segmentation
output.

IV. EXPERIMENT

This section showcases the efficacy of our proposed method
by subjecting it to a diverse set of datasets. Results obtained
from these experiments are then evaluated alongside those
generated by current state-of-the-art methods to ascertain the
superiority of our approach. Furthermore, the validity and
rationality of each component of our method are established
through a series of ablation experiments.

A. Experimental Setting

Dataset. In this paper, we conduct experiments using sev-
eral datasets, including the Princeton Segmentation Bench-
mark (PSB) dataset [54], COSEG dataset [55], ShapeNetCore
dataset [56], and HumanBody dataset [53], to demonstrate the

performance of our approach. The PSB and COSEG datasets
are two widely used benchmark datasets for evaluating 3D
shape segmentation algorithms. The PSB dataset comprises
19 categories, each of which contains 20 models. We removed
three categories from the PSB dataset, namely, Bust, Bearing,
and Mech, as the models in these categories lack consistent
semantic labels. The COSEG dataset is divided into two parts,
including a small dataset with eight categories and 190 shapes,
and a large dataset with 400 chair shapes, 300 vase shapes, and
200 special-shaped shapes. The ShapeNetCore dataset contains
16 classes, with a total of 4916 models. The HumanBody
dataset involves the segmentation task of mannequins and
contains a total of 11 categories, where the training set contains
381 models, and the test set contains 18 models. Only the
HumanBody dataset maintains the original training test set
assignment. For other datasets like PSB and COSEG, we
randomly selected 60% of the models as the training set and
the rest as the testing set. Figure 6 shows some examples of
training sets and testing sets.

Experiment details. Our algorithm is implemented using
Python, C++, and Matlab. The network weights are initialized
to follow Gaussian distributed random variables with zero
mean and 0.001 variance. The Adam optimizer is chosen, and
the learning rate is set to 0.001. The experiments are executed
on a single NVIDIA GeForce GTX 3090Ti GPU. For each
3D model consisting of 20K-30K faces, the training process
takes approximately 30 minutes, and the evaluation time is
approximately 50 seconds.

B. Results

The performance evaluation metrics adopted in our method
are consistent with those presented in Guo et al. [8]. The
following is the mathematical expression of the evaluation
index:

Accuracy =
∑
i∈T

Cigt (li) /
∑
i∈T

Ci, (7)
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Fig. 6. Some examples of the training dataset and the testing dataset used in our experiments.

TABLE I
THE ACCURACY COMPARISON OF OUR METHOD WITH SEVERAL STATE-OF-THE-ART METHODS, INCLUDING SHAPEBOOST [6], WANG ET

AL. [33], GUO ET AL. [8], SHAPEPFCN [25], MESHCNN [44], MESHWALKER [9], AND XU ET AL. [45] ON THE PSB DATASET. THE
RESULTS OF MESHCNN AND MESHWALKER ARE OBTAINED ON A LOW-RESOLUTION PSB DATASET, AS SUGGESTED IN THEIR PAPERS, SINCE
THE METHODS ARE ONLY SUITABLE FOR LOW-RESOLUTION SHAPES FOR THE HEAVY COMPUTATION BURDENS. OTHER METHOD RESULTS ARE

COMPUTED ON THE ORIGINAL PSB DATASET. THE ”OURS” REPRESENTS THE ACCURACY OF OUR APPROACH.

Category ShapeBoost Wang et al. Guo et al. ShapePFCN MeshCNN MeshWalker Xu et al. Ours

Human 93.20% 55.60% 91.22% 93.80% 74.76% 87.02% 94.08% 94.44%
Cup 99.60% 99.60% 99.73% 93.70% 95.86% 99.54% 99.79% 99.82%

Glasses 97.20% - 97.60% 96.30% 93.94% 96.11% 98.69% 99.04%
Airplane 96.10% - 96.67% 92.50% 84.36% 96.20% 97.66% 98.10%

Ant 98.80% - 98.80% 98.90% 91.83% 97.36% 98.98% 98.84%
Chair 98.40% 99.60% 98.67% 98.10% 84.75% 97.61% 99.35% 99.42%

Octopus 98.40% - 98.79% 98.10% 98.21% 97.86% 99.34% 99.71%
Table 99.30% 99.60% 99.55% 99.30% 96.78% 99.33% 99.59% 99.53%
Teddy 98.10% - 98.24% 96.50% 84.29% 95.57% 99.08% 98.99%
Hand 88.70% - 88.71% 88.70% 68.83% 83.31% 88.61% 90.67%
Plier 96.20% - 96.22% 95.70% 83.69% 92.24% 97.14% 97.35%
Fish 95.60% - 95.64% 95.90% 89.05% 94.58% 97.05% 97.49%
Bird 87.90% - 88.35% 86.30% 68.09% 92.76% 90.39% 94.28%

Armadillo 90.10% - 92.27% 93.30% 50.24% 89.12% 93.82% 93.57%
Vase 85.80% 90.50% 89.11% 85.70% 68.94% 84.56% 89.31% 90.31%

FourLeg 86.20% 54.30% 87.02% 89.50% 68.73% 80.93% 87.42% 89.29%

Average 94.35% - 94.79% 93.89% 81.40% 92.76% 95.64% 96.30%

TABLE II
THE ACCURACY COMPARISON OF OUR METHOD WITH THREE OTHER

METHODS, INCLUDING SHAPEBOOST [6], MESHCNN [44], AND
SHAPEPFCN [25], ON THE SMALL COSEG DATASET.

Methods ShapeBoost MeshCNN ShapePFCN Ours

Candelabra 85.50% 83.52% 95.40% 94.93%
Chairs 94.80% 92.87% 96.10% 96.88%
Fourleg 92.30% 86.19% 90.40% 92.44%
Goblets 97.00% 92.62% 97.20% 97.99%
Guitars 97.70% 91.34% 98.00% 98.73%
Irons 87.20% 81.26% 88.00% 91.22%

Lamps 76.30% 83.64% 93.00% 87.18%
Vases 86.40% 77.43% 84.80% 91.25%

Average 89.65% 86.11% 92.86% 93.83%

where T is the triangle set of the testing shapes, and Ci is the
area of the triangle i. gt (li) equals 1 if the label prediction
of li is correct and 0 otherwise.

The accuracy of our proposed method on four different
datasets, namely PSB, small COSEG, ShapeNetCore, and Hu-
manBody, is presented in Tables I, II, III, and IV, respectively.
We achieve high accuracy on these datesets, where 96.30% on
the PSB dataset, 93.83% on the small COSEG dataset, 88.9%
on the ShapeNetCore, and 93.50% on the HumanBody dataset.
We also demonstrate the effectiveness of our proposed method
using several examples in Figure 7. Specifically, we compare
the segmentation results before and after applying our method
to the baseline for a few selected images. The comparison
shows that our method significantly improves the precision of
the segmentation and produces results that are very close to
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Fig. 7. Our segmentation results on 3D shapes compared with the ground-truth. “GT” represents the ground-truth. “Ours” represents the results of our method.

TABLE III
THE ACCURACY COMPARISON OF OUR METHOD WITH SEVERAL STATE-OF-THE-ART METHODS, INCLUDING SHAPEBOOST [6], KIM’S

METHOD [46], AND POINT-BERT [57], ON THE SHAPENETCORE DATASET. THE ”OURS” REPRESENTS THE ACCURACY OF OUR APPROACH.

Category ShapeBoost Kim’s method Point-BERT Ours

Airplane 85.8% 87.4% 84.3% 91.2%
Bag 93.1% 91.0% 84.8% 95.7%
Cap 85.9% 85.7% 88.0% 94.4%
Car 79.5% 80.1% 79.8% 87.1%

Chair 70.1% 66.8% 91.0% 81.2%
Earphone 81.4% 79.8% 81.7% 85.5%

Guitar 89.0% 89.9% 91.6% 92.6%
Knife 81.2% 77.1% 87.9% 83.3%
Lamp 71.7% 71.6% 85.2% 80.1%
Laptop 86.1% 82.7% 95.6% 95.6%

Motorbike 77.2% 80.1% 75.6% 87.3%
Mug 94.9% 95.1% 94.7% 95.7%
Pistol 88.2% 84.1% 84.3% 91.4%

Rocket 79.2% 76.9% 63.4% 84.2%
Skateboard 91.0% 89.6% 76.3% 92.6%

Table 74.5% 77.8% 81.5% 85.2%

Average 83.0% 82.9% 84.1% 88.9%

TABLE IV
THE ACCURACY COMPARISON OF OUR METHOD WITH SEVERAL STATE-OF-THE-ART METHODS, INCLUDING FC [47], DIFFUSIONNET [48],

HODGENET [49], MDGCNN [50], PFCNN [52], AND SUBDIVNET [51] ON THE HUMANBODY DATASET[53]. THE ”OURS” REPRESENTS THE
ACCURACY OF OUR APPROACH.

Methods FC DiffusionNet HodgeNet MDGCNN PFCNN SubdivNet Ours

Accuracy 92.90% 91.50% 85.03% 89.47% 91.79% 93.00% 93.50%

the ground truth.

C. Comparison

We present a comprehensive comparison of various seg-
mentation methods used in shape segmentation. The methods
include Wang et al. [33], ShapeBoost [6], Guo et al. [8], Kim
et al. [46], MeshCNN [44], SubdivNet [51], Point-BERT [57],
ShapePFCN [25], and MeshWalker [9]. Guo et al. use a 2D
convolutional neural network to process a matrix of geometric
feature vectors. ShapeBoost, on the other hand, employs a
conditional random fields model to process multiple geometric
shape descriptors. Wang et al. and ShapePFCN transform

3D shapes into an ensemble of 2D projections using distinct
image-based segmentation techniques. MeshCNN defines the
convolution and pooling operations on edges to facilitate shape
segmentation. In contrast to MeshCNN, MeshWalker utilizes
RNNs to execute random traversals across the mesh surface,
thus enabling 3D shape segmentation. SubdivNet constructs
a subdivision structure, facilitating the acquisition of a multi-
resolution representation for a general mesh. Point-BERT de-
signs a new Transformers pre-training method to help standard
Transformers simultaneously learn low-level structural and
high-level semantic information.

Across the PSB and COSEG datasets, our algorithm con-
sistently attains the highest average accuracy. Table I presents
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Fig. 8. Qualitative comparison of baseline, our method, and the ground truth. Baseline refers to the simple use of a Transformer network for training and
prediction, and our method uses two modules of consistency mining and enhancement on the basis of baseline.

TABLE V
RESULTS OF ABLATION EXPERIMENTS ON TWO COMPONENT STRUCTURES OF OUR ALGORITHM.

THE CHECK MARK ✓IN THE TABLE INDICATES WHETHER THE MODULE WAS USED IN THE EXPERIMENT.

Baseline Consistency mining Consistency enhancement Accuracy on the HumanBody dataset Accuracy on the PSB dataset

Transfomer
- - 89.55% 93.88%
✓ - 90.69% 94.80%
✓ ✓ 93.50% 96.30%

MLP
- - 84.87% 86.49%
✓ - 85.51% 86.95%
✓ ✓ 87.00% 88.39%

the 3D segmentation accuracy of different methods on the PSB
dataset. The accuracy of our algorithm exceeds that of other
algorithms in nine categories. As showcased in Table II, our
algorithm outperformed other methods in six categories on the
COSEG dataset.

Table III and Table IV compare the accuracy of our method
against ShapeBoost, Kim’s method, ShapePFCN, and other
methods on the ShapeNetCore and Humanbody datasets. It
is manifest that our method excels in terms of segmentation
accuracy across two datasets.

D. Ablation Studies

In order to validate the effectiveness of our proposed
method, we conduct ablation experiments on two key com-
ponents of the algorithm on the HumanBody dataset and the
PSB dataset. Specifically, we evaluate the performance of the
consistency mining module by comparing the segmentation
accuracy before and after its use. To better validate the inde-
pendent impact of the consistency mining module, we exclude
the consistency enhancement module from this evaluation. Ad-
ditionally, we test the performance of the consistency enhance-
ment module and demonstrate the performance improvement
achieved using this module based on the consistency mining
module. The results of these experiments are presented in
Table V. Upon adding the consistency mining module to the
baseline, we observe an insignificant improvement in the seg-
mentation performance of the network, as depicted in Table V.

This can be attributed to the fact that while consistency mining
brings additional information of the 3D shapes to the network,
it only provides one-time feature enhancement to the network
and cannot be significantly enhanced during iterative training.
However, after applying the consistency enhancement strategy,
the consistency mining strategy can be continuously updated.
The consistency discovered by the network is in a dynamic
self-correcting state during the iterative process, leading to
more accurate segmentation results.

Figure 8 shows some example results comparing the base-
line (only a Transformer Network), our method, and the
ground truth. Our proposed segmentation method performs
better in precisely identifying the boundaries between par-
titions of 3D shapes, in contrast to the baseline method.
Specifically, the neural network faces a significant challenge
in accurately delineating boundaries within the edge regions
with high feature similarity. This lack of consistency in in-
formation incorporation impedes the precise classification of
such regions.

We also make an ablation study about selecting the network
we use. We utilize two network frameworks, namely MLP and
Transformer, as the backbone of our method, and evaluate the
accuracy when using these two networks on the HumanBody
dataset and the PSB dataset. As shown in Table V, since
the self-attention mechanism of the Transformer facilitates the
network to understand the geometric features, its accuracy is
higher than that of ordinary MLP.
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Fig. 9. Some examples of 3D shapes with different resolutions.

TABLE VI
THE RESULTS OF THE ABLATION STUDY ABOUT MESHES’ RESOLUTIONS.

Resolution 28000 faces 19000 faces Origin 8000 faces 6000 faces 4000 faces 2000 faces

Average 95.75% 96.01% 96.30% 95.84% 94.44% 93.20% 92.59%

At the same time, to verify the robustness of our algorithm
with regard to the resolutions of 3D meshes, we also conducted
ablation experiments by controlling the number of faces of
3D shapes. We compare the results of our algorithm for
the 3D shape of 28000 faces, 19000 faces, the original 3D
shape, the 3D shape of 8000 faces, 4000 faces, and 2000
faces. The subdivided meshes are obtained by applying Loop’s
subdivision method to the original mesh models. In contrast,
the simplified 3D meshes are obtained by simplifying the
original ones using the well-known QEM algorithm. The
results obtained are shown in Table VI. Some examples of
3D shapes with different resolutions used in this ablation
experiment are shown in Figure 9.

The results presented in Table VI indicate that our proposed
method is robust to variations in the mesh resolution and
can achieve satisfactory results. However, we observe a slight
decrease in performance when the resolution of the mesh
is too high or too low. Specifically, lower resolutions may
result in losing geometric details, affecting the algorithm’s
performance. Conversely, higher resolutions can enhance the
algorithm’s ability to capture more geometry details, leading
to more effective feature learning. Nevertheless, increased
mesh resolution does not constantly improve accuracy, as
we observe a downward trend. We attribute this trend to
the excessive redundant information that the network accepts.
Moreover, our method primarily focuses on optimizing the
boundary classification between distinct partitions of the 3D
shape. When the resolution of the 3D shape is increased, the
proportion of the area and number of edge parts in the entire
shape is compressed, thereby partially limiting the benefits of
our algorithm and resulting in a slight decline in accuracy.

Finally, we also conducted an ablation experiment about
graph-cuts of our method on the small COSEG dataset, the
results of which are shown in Table VII. One can see that

TABLE VII
THE RESULTS OF THE ABLATION STUDY ABOUT GRAPH-CUTS (GC) OF

OUR METHOD ON THE SMALL COSEG DATASET.

Methods Bi-LSTM without GC Bi-LSTM with GC

Candelabra 80.43% 94.93%
Chairs 75.07% 96.88%
Fourleg 86.73% 92.44%
Goblets 81.65% 97.99%
Guitars 93.04% 98.73%
Irons 84.94% 91.22%

Lamps 79.75% 87.18%
Vases 77.99% 91.25%

Average 82.45% 93.83%

graph-cuts can ensure our results are consistent with the
minima rule, thus improving the segmentation performance.

V. LIMITATION AND FUTURE WORK

Our method relies on feature descriptors on 3D shapes,
therefore the input 3D shapes must be manifold. Making our
method not limited to handling manifold shapes is one of
the directions of our future work. In addition, the network
architecture used by our method may not be optimal, and
we will try different network frameworks in future work to
fully exploit our method’s advantages. Our method can also
inspire related work on point cloud or 2D image segmentation
in future work.

VI. CONCLUSION

This paper proposes a 3D shape segmentation method based
on consistency mining and enhancement. Unlike approaches
that only focus on network architecture, our approach starts
by guiding the network to learn the potential consistency
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of the data itself. Our method first generates a preliminary
partition of the 3D shape, and adds a constraint that enables
the network to get consistent and accurate labels in each
partition. The results of the partitions are gradually optimized
during the training iteration of the network. In general, our
method has three advantages: 1) Our method mines and
enhances the original consistency of data and improves the
performance of segmentation by strengthening the network’s
ability to extract data features. 2) The method dynamically
adjusts the region division in mining consistency, improving
the network’s performance while avoiding overfitting. 3) Since
the consistency enhancement strategy of the method will also
extract the features of the faces around the target face, the
contextual information of the face will also be fully taken into
account. Our method is validated on publicly available datasets
such as the Princeton Shape Benchmark and COSEG dataset,
and experimental results show that our method performs better
than existing 3D shape segmentation methods.
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