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Semi-supervised 3D Shape Segmentation via Self
Refining
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Abstract—3D shape segmentation is a fundamental and crucial
task in the field of image processing and 3D shape analysis. To
segment 3D shapes using data-driven methods, a fully labeled
dataset is usually required. However, obtaining such a dataset
can be a daunting task, as manual face-level labeling is both
time-consuming and labor-intensive. In this paper, we present a
semi-supervised framework for 3D shape segmentation that uses
a small, fully labeled set of 3D shapes, as well as a weakly labeled
set of 3D shapes with sparse scribble labels. Our framework first
employs an auxiliary network to generate initial fully labeled
segmentation labels for the sparsely labeled dataset, which helps
in training the primary network. During training, the self-refine
module uses increasingly accurate predictions of the primary
network to improve the labels generated by the auxiliary network.
Our proposed method achieves better segmentation performance
than previous semi-supervised methods, as demonstrated by
extensive benchmark tests, while also performing comparably
to supervised methods.

Index Terms—3D shape segmentation, Semi-Supervised, Deep
neural network

I. INTRODUCTION

SHAPE segmentation, which involves separating 3D shapes
into meaningful parts, is crucial for efficiently processing

3D shapes. It enables the intrinsic properties of the shape, such
as its structure, to be more easily understood. Consequently,
various tasks such as mesh editing [1], reconstruction [2], [3],
modeling [4], deformation [5], and shape retrieval [6], [7] rely
on 3D shape segmentation to achieve satisfactory results. As a
result, shape segmentation has become one of the most popular
and challenging research fields.

The conventional approaches [8], [9], [10] to 3D shape
segmentation typically involve three main steps. Firstly, hand-
crafted shape descriptors are used to map each face on shapes
to a corresponding feature vector. Subsequently, clustering
or classification methods are applied in the feature space to
assign a label to each feature vector. Finally, each face in the
3D shape is labeled based on the label of its corresponding
feature vector. However, recent advances in machine learning
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Fig. 1. (a) the original unlabeled 3D shape, (b) the 3D shape with sparse
scribble labels, and (c) the fully labeled 3D shape.

have led to the development of learning-based segmentation
methods [11], [12], [13], [14], particularly those based on deep
learning architectures [15], [16], [17]. These methods have
shown remarkable improvements in performance compared
to traditional geometric optimization methods. Among these,
projection techniques are utilized in 3D shape segmentation to
obtain the multi-view rendered or depth images for each 3D
shape using different camera settings while correspondences
between faces and pixels are established [16], [18]. Semantic
segmentation can be applied to the multi-view images to get
labeled images, which are further back-projected to each 3D
shape based on the established correspondences.

Although learning-based segmentation methods, especially
those using deep learning, have shown impressive results,
they have a major drawback of requiring a vast amount of
fully labeled training data that are similar to the target shape.
This can be a significant burden in terms of the time and
cost of manual labeling. As a result, these limitations of the
existing learning-based segmentation methods have motivated
the development of novel approaches that can overcome these
issues.

To overcome the limitations of current learning-based
segmentation methods, we propose a novel semi-supervised
framework for 3D shape segmentation. In our approach, we
divide the training dataset into two parts: a small amount of
fully labeled 3D shapes (F ) and a number of sparsely scribbled
shapes (S). Figure 1 provides a visual comparison between
an original 3D shape, a sparsely scribbled 3D shape, and a
fully labeled 3D shape, highlighting the differences between
them. Combined with our novel framework, our method can
effectively reduce the workload of manual labeling, which are
expensive and time-consuming.

Our framework consists of three modules. Firstly, the aux-
iliary model generates initial segmentation labels for sets
with sparsely scribbled labels. Next, the primary segmentation
model is trained with the support of the auxiliary model,
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leveraging the initial labels to improve segmentation accuracy.
Finally, the self-refine module utilizes increasingly accurate
primary models to iteratively refine the generated labels during
training.

Our contributions are as follows:
• We propose a semi-supervised framework for training

3D shape semantic segmentation. Our framework makes
use of a small set of fully labeled 3D shapes and a
set of sparsely scribbled labeled 3D shapes, significantly
simplifying the 3D shape labeling process.

• We introduce two mechanisms in our framework: the
auxiliary module generates label predictions at the face
level for the scribble set, while the self-refine module uses
a trainable CNN module to adjust the prediction results
of both the primary and auxiliary modules on the scribble
set.

• Extensive results from the public benchmark test show-
case that our proposed approach outperforms previous
unsupervised and semi-supervised methods in terms of
semantic segmentation. Moreover, our method’s perfor-
mance is comparable to that of the fully supervised
methods.

The rest of the paper is structured as follows. Section II
provides a review of the related work. Section III presents a
detailed explanation of our proposed method. In Section IV,
we evaluate the performance of our algorithm on benchmark
datasets. Section V discusses the limitations of our approach
and suggests future research directions. Lastly, Section VI
concludes the paper.

II. RELATED WORK

3D shape segmentation is a fundamental and significant task
in shape analysis and understanding as it aims to partition
3D shapes into meaningful parts that conform to human
perception. In the past decade, there has been a surge in the
development of novel and efficient 3D shape segmentation
methods, primarily driven by advancements in machine learn-
ing, particularly deep learning techniques. Existing methods
for 3D shape segmentation can be broadly classified into
three categories: traditional 3D segmentation, unsupervised
3D shape segmentation, and deep learning-based 3D shape
segmentation methods.

A. Traditional 3D Shape Segmentation

Early works in the field focus on designing suitable 3D
shape feature descriptors that effectively capture the struc-
tural information. These methods involve extracting features
from the 3D shape and utilizing classification algorithms to
classify different regions. Commonly used features include
shape descriptors such as surface normals and curvature, local
features of voxels like local histograms, or histogram-based
statistical features. Classification algorithms range from simple
thresholding to more sophisticated techniques such as support
vector machines and random forests [19], [20].

Region-growing-based methods [21] begin with known seed
points and progressively expand and merge similar regions.
These methods compute similarity measures, such as color,

texture, or shape features, between neighboring regions to
determine whether they should be merged.

Graph-based methods represent shapes as graphs, with
nodes representing elements of the shape and edges represent-
ing their relationships. By defining an energy function on the
graph and employing graph theory algorithms such as graph
cuts (Boykov et al. [22]) or minimum spanning tree (Pettie et
al. [23]) to minimize the energy function, shape segmentation
can be achieved. In a specific study, Lai et al. [24] propose
a fast and effective technique for segmenting 3D meshes into
coherent regions using geometric and topological information.

B. Unsupervised 3D Shape Segmentation

Prior to benefiting from data-driven approaches, the research
community treats 3D shape segmentation as a clustering chal-
lenge. Generally speaking, those unsupervised methods aim to
partition the 3D shape into meaningful segments based on the
similarity of their features. Techniques like k-means clustering,
spectral clustering, or hierarchical clustering are commonly
used to group similar elements together. Clustering algorithms
rely on feature descriptors, such as geometric properties,
surface normals, or local shape descriptors, to measure the
similarity between elements.

Hu et al. [25] perform clustering to capture the inherent
subspace structure within a collection of shapes, allowing
for the discovery of shared patterns and variations. Kaick et
al. [26] present a robust method for segmenting incomplete 3D
point clouds into semantic parts by decomposing the shape into
weakly convex components and merging similar components
based on volumetric analysis. Lin et al. [27] propose to use
the medial axis transform of 3D shapes to encode geometrical
and structural information and obtain satisfactory segmentation
results.

These methods have been widely used in the field of 3D
shape segmentation in the past, with certain advantages and
limitations. However, in recent years, deep learning methods
have made significant progress in 3D shape segmentation,
enabling better handling of complex shapes and large-scale
data.

C. Deep Learning on 3D Shape Segmentation

The 3D shapes, represented by meshes, consist primarily
of vertices, edges, and faces. Consequently, deep learning-
based approaches for 3D shape segmentation revolve around
these fundamental elements. Additionally, techniques employ-
ing multi-view projection often project the mesh onto 2D
images to perform 3D shape segmentation tasks.

Guo et al. [28] and Yu et al. [29] employed transformers
or recursive neural networks to assign labels to points on the
surfaces of 3D shapes efficiently. MeshCNN [30] proposes
an innovative neural network architecture tailored for deep
learning on meshes. The network introduces a convolution
operation known as “edge convolution” that directly operates
on edges within the mesh. Moreover, MeshCNN incorporates
“edge pooling”, a pooling operation based on edge collapsing
algorithms, to reduce computational load while preserving
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Fig. 2. Our segmentation framework comprises three components: i) The primary segmentation module: This module generates semantic segmentation
predictions for a given 3D shape. It serves as the primary module for both training and testing. ii) The auxiliary segmentation module: This module outputs
face-level segmentation predictions for each 3D shape with sparse scribble labels. It generates the initial segmentation for the scribble set, which is then used
as input for training the primary network. iii) The self-refine module: This module refines the segmentation predictions generated by the auxiliary network
and the current primary network for the scribble sets. It improves the accuracy of the segmentation results. The primary network is trained using cross-entropy
loss, where its output is matched with the ground-truth segmentation label of the fully labeled shape or the output of the self-refine module for the scribble
set. This training process ensures that the primary network learns to produce accurate segmentation predictions.

high resolution. Lahav et al. [31] utilize random walk algo-
rithms to learn the global structure and local properties of
meshes. Inspired by [32], Milano et al. [33] combine convolu-
tion operations on both primal and dual meshes and introduce
a novel distance metric to enhance learning efficiency and ac-
curacy. HodgeNet [34] learns a sparse differential operator pa-
rameterized using discrete exterior calculus, computes its low-
order eigendecomposition, and produces per-vertex features
using the spectral geometry. By transforming input meshes into
the Laplacian-Beltrami spectral domain, Laplacian2Mesh [35]
enables the use of mature CNN architectures for shape analysis
tasks without dealing with irregular mesh connectivity.

Apart from the utilization on vertices and edges, several
approaches deploy neural networks on the faces of meshes.
Kalogerakis et al. [11] present a data-driven approach to
simultaneously segment and label parts of 3D meshes using a
Conditional Random Field model learned from labeled training
meshes. Guo et al. [15] propose a 3D mesh labeling method
using deep convolutional neural networks to learn robust mesh
representations from geometric features and generate label
vectors for triangles. Several recent works [36], [37], [38],
[39], [40] have focused on developing deep neural network
frameworks for learning 3D shape representation from mesh
data.

In most of the methods mentioned earlier, the geometric
features of 3D shapes, such as feature descriptors of faces,
dihedral angles of edges, etc., are used as training data.
However, multi-view-based methods solve the segmentation
task of 3D shapes by establishing a mapping relationship
between the 3D shape and its projected images. Wang et
al. [18] and Kalogerakis et al. [16] employed projection
matrices to project 3D shapes onto 2D images, followed
by the application of image-based segmentation algorithms

for achieving segmentation of the 3D shapes. Concurrently,
Several recent works [41], [42], [43] have been a growing
interest in methods for capturing features of 3D meshes using
multi-view approaches.

Supervised learning methods require a large amount of
fully labeled 3D shapes as training datasets. However, man-
ually labeling a significant number of 3D shapes is a time-
consuming and labor-intensive task. To mitigate this problem,
several semi-supervised and weakly supervised methods are
proposed. Shu et al. [44] propose a novel weakly-supervised
3D shape segmentation method that relies only on sparse
scribble-based labels for training and achieves comparable
performance to supervised methods. Zhuang et al. [45], [46]
develope two semi-automated approaches to decompose a
mesh into multiple patches with boundaries corresponding to
ridge and valley lines. Tao et al. [47] employ an interactive
weak labeling approach to indicate each instance’s location
in point cloud scenes precisely. Another semi-supervised 3D
shape segmentation method is provided by Shu et al. [48],
which combines soft density peak clustering and an optimiza-
tion model for propagating labels to unlabeled parts.

To overcome the same limitations as the prior semi-
supervised and weakly supervised methods, we propose a
novel semi-supervised framework for 3D shape segmentation
that utilizes only a small number of 3D shapes with patch-
level semantic segmentation labels and another group of 3D
shapes with sparse scribble labels. Our framework begins by
training an auxiliary network to generate initial face-level
label predictions for 3D shapes in the sparsely-labeled dataset
S. During the training of the primary model, the self-refine
module improves the labels of dataset S, resulting in excellent
segmentation results while greatly simplifying the labeling
process for 3D shapes.
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III. OUR METHOD

This section begins with an overview of the algorithm’s
pipeline, followed by individual introductions to each module
within the framework. Finally, the complete training process
is presented.

A. Overview

Our method employs two training sets to train the semi-
supervised semantic segmentation network: 1) a small dataset
F with fully labeled data, and 2) a large dataset S com-
prising sparsely scribble-labeled data. Our overall pipeline,
illustrated in Figure 2, consists of three modules: i) The
primary segmentation network generates face-level semantic
segmentation predictions for a given unlabeled 3D shape.
ii) The auxiliary segmentation network generates face-level
semantic segmentation predictions for 3D shapes that only
have sparse scribble labels. This module generates the initial
face-level segmentation for the dataset S, which serves as
input to aid in training the primary network. iii) The self-
refine module refines the segmentation prediction results of
the dataset S, generated by both the auxiliary network and the
current primary network.

B. Primary Segmentation Module

By excluding the self-refine and auxiliary modules, the
primary segmentation module can be trained using ground
truth labels on the fully supervised set F , employing the cross-
entropy loss function:

Lf = − 1

|F |
∑
f∈F

∑
y

y log ppri (y|x;ϕ), (1)

where x represents the feature vector of the face f ∈ F , while
ppri represents the prediction of the primary network for the
input x.

In our network, we use five established geometric fea-
ture descriptors, including AGD [49], GC [50], SDF [51],
SIHKS [52], and WKS [53], to extract the geometric feature
vectors of each face, whose dimensions are 1, 1, 1, 19, and
100 respectively. We concatenate the five feature vectors into
one 122-dimensional vector x(f). In the implementation, the
primary network is composed of five fully connected layers,
where the number of neurons of each layer is 122, 60, 40, 10,
and C (the number of segments), respectively.

However, the fully supervised training method demands a
substantial quantity of fully labeled data. The effectiveness
of the model’s training diminishes when the training dataset
is relatively small, such as when utilizing solely the dataset
F . Nevertheless, manual labeling of additional 3D shapes
is a laborious and time-consuming task. Consequently, we
introduce an auxiliary module that significantly simplifies the
annotation process by solely relying on sparsely labeled 3D
shapes as input. This module empowers us to acquire face-
level semantic segmentation predictions for these 3D shapes.

Fig. 3. For each sparsely labeled 3D shape, we project the shape using
different camera parameter settings to obtain depth maps and rendered images.
Subsequently, we transform these two types of single-channel 2D images
into three-channel images, and we also establish correspondence between 2D
images and faces on 3D shapes. Based on these combined images, we conduct
training for image semantic segmentation. The auxiliary network is trained
using dataset F , and the trained model is applied to dataset S to obtain face-
level labels for dataset S.

C. Auxiliary Segmentation Module

When training a 3D shape semantic segmentation network
using sparse scribble labels, propagating the labels poses a
significant challenge. Existing methods primarily depend on
manually designed rule-based processes, such as representing
the 3D shape as a graph and employing graph-cut algorithms
for label propagation. Additionally, some researchers have in-
vestigated iterative segmentation and sparse label propagation
of 3D shapes by devising suitable similarity matrices.

In contrast, our approach uses a multi-view projection model
to project the 3D shape into 2D images. For each sparsely
scribble-labeled 3D shape, we define 32 virtual cameras at
different positions placed at the bounding sphere radius of
the shape. Additionally, each camera is rotated four times at
90-degree intervals. Therefore, for each input 3D shape, these
cameras generate 128 sets of depth maps and rendered images,
which can cover almost all vertices and facets of each shape
in the dataset used in our experiments. At the same time,
we establish a reference matrix to record the correspondence
between 2D images and faces on 3D shapes. We transform
the single-channel depth images and rendered images from
each set of projected images into three-channel images. In
this process, the positive depth images are designated as the
first channel, the rendered images are the second channel
and the negative depth images are set as the third channel.
Next, we use these combined images as input to train the
DeepLabv3+ image semantic segmentation network in an end-
to-end manner, generating label predictions for these images
and mapping the pixel label predictions back to the faces of
the 3D shape using the established mapping relationship. As
a result, label probability distribution results are generated for
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each face of the input 3D shape (as illustrated in Figure 3).
Benefiting from the pre-trained image semantic segmentation
network on a large-scale image dataset, we achieve a more
efficient and accurate label propagation process for the input
sparsely labeled 3D shape.

This module is trained using dataset F and can serve as a
3D shape-label prediction model for dataset S. The auxiliary
module is trained on the fully supervised set F using cross-
entropy loss:

Laux = − 1

|F |
∑
f∈F

∑
y

y log paux (y|x, s;θ), (2)

where s denotes the sparse scribble labels obtained by ran-
domly sampling the ground truth labels of the 3D shapes in
dataset F , and paux represents the prediction of the auxiliary
network for the input x.

In subsequent experiments, the model parameters θ remain
unchanged. During the prediction process, 3D shapes labeled
with sparse scribbles from dataset S are input into the network
to obtain the prediction of face-level semantic segmentation
labels. After adding the auxiliary module, when processing
3D shapes in dataset S with sparse scribble labels, the pri-
mary network first uses soft labels generated by the auxiliary
network for these shapes and then trains with the cross-entropy
loss:

Ls = − 1

|S|
∑
f∈S

∑
y

paux (y|x, s;θ) log ppri (y|x;ϕ), (3)

where x represents the feature vector of face f ∈ S, paux is
the soft label generated by the auxiliary network for the input
x with sparse scribble s, and ppri represents the prediction
of the primary network for the input x. Ls denotes the cross-
entropy loss targeting the soft labels generated by the auxiliary
network.

Without the self-refine module, the primary network is
trained by using the ground truth labels obtained from dataset
F and the labels generated from the auxiliary network for
dataset S. The overall loss function for this training process
can be expressed as follows:

L = Lf + Ls. (4)

D. Convolutional Self-Refine Module

The equations mentioned above rely on the auxiliary model
to predict the label distribution for the face-level segmentation
of 3D shapes in the dataset S. However, the pseudo-labels
generated by the auxiliary model possess limited accuracy. In
the early stages of training the primary network, these rough
pseudo-labels can be beneficial. However, in the later stages
of training, they lose their effectiveness and may even have a
harmful impact on the training of the primary network. This
is primarily due to the introduction of erroneous labels, which
can cause the network to converge in an incorrect direction.

Therefore, we propose a novel convolutional self-refine
module that combines the predictions of both the primary
and auxiliary networks to generate face-level labels to 3D
shapes in dataset S. The proposed module comprises two
layers of 5x5 convolutional layers, which learn the weights

Fig. 4. The convolutional self-refine module refines the label predictions of
the auxiliary network for the 3D shapes in dataset S. This network takes the
predictions of the primary network and the auxiliary network on dataset S
as input and combines their outputs. The combined output is then fed into a
four-layer CNN module.

of predictions from primary and auxiliary networks during
the training process. By incorporating information from both
networks, the self-refine module refines the label predictions
and enhances the accuracy of the final results. As illustrated
in Figure 4, during the training of the primary network, the
network can dynamically adjust the weights assigned to the
predictions on dataset S. In case the primary model offers
more accurate label predictions, the module assigns a higher
weight to the primary model’s predictions. This adaptive
weighting mechanism enables the module to leverage the
strengths of both models and significantly enhance the overall
performance.

To ensure that the self-refine module can provide more
accurate predictions than the auxiliary or primary networks,
we introduce an Lconv term in the total loss function. This
term enables the self-refine module to learn from dataset F
while concurrently training the primary network on the entire
dataset:

Lconv = − 1

|F |
∑
f∈F

∑
y

y logPconv, (5)

where Pconv is defined as follow:

Pconv = pconv
(
y|ppri(x,ϕ), paux(x, s,θ);λ

)
. (6)

The convolutional self-refine network takes the predicted logits
generated by the auxiliary and primary networks and generates
the final segmentation soft labels pconv . Here, λ represents the
parameters of the convolutional self-refine network.

With the introduction of the convolutional self-refine mod-
ule for the 3D shapes in dataset S, the training cross-entropy
loss function of the primary network will be updated as
follows:

Ls = − 1

|S|
∑
f∈S

∑
y

Pconv log ppri (y|x;ϕ). (7)

E. Training Process.

The total loss function for our proposed method is defined
as follows:

L = Lf + Ls + Lconv. (8)

In the course of our experimentation, we observed that pre-
training the auxiliary network on the entire dataset F resulted

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2024.3374200

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, MONTH YEAR 6

ALGORITHM 1: Training process of our method
Input:

3D shapes within fully labeled dataset F and
sparsely scribble-labeled dataset S.
Output:

Trained primary network for 3D shape segmentation.
Training process:
Step 1: Initial training of the auxiliary network;

for f ∈ F/2 do
Project face f with scribble s into pixel;
Obtain auxiliary prediction paux(y|x, s;θ);
Update loss Laux based on Eq. (2).

Step 2: Initial training of self-refine network;
for f ∈ F do

Calculate primary prediction ppri(y|x;ϕ);
Obtain auxiliary prediction paux(y|x, s;θ);
Get self-refine labels pconv(y|ppri, paux;λ);
Update loss Lf and Lconv based on Eq. (1, 5).

Step 3: Training primary network.
for f ∈ F ∪ S do

Calculate primary prediction ppri(y|x;ϕ);
Obtain auxiliary prediction paux(y|x, s;θ);
Get self-refine labels pconv(y|ppri, paux;λ);
Update total loss L based on Eq. (8).

in highly precise predictions for the dataset F . In such cases,
the subsequent convolutional self-refine network becomes
overly rely on the predictions of the auxiliary network, failing
to effectively learn how to balance the predictions of both
the auxiliary and primary networks. To clarify our method,
Algorithm 1 presents the training process of our approach.

IV. EXPERIMENTS

This section first provides a comprehensive overview of
our experiments’ evaluation metrics, implementation details,
and training dataset splitting strategies. Then, we present
the qualitative and quantitative results of our method on the
widely used PSB, COSEG, ShapeNetCore, and Human Body
datasets. Moreover, we compare our method with the results of
existing state-of-the-art 3D shape segmentation methods. We
also conducted some ablation studies to verify the effectiveness
of components in our method.

Evaluation Metrics. In comparison with the supervised
learning methods such as [11] and [15], we measure the
performance using accuracy, as follows:

Accuracy =
∑
i∈T

tiu (li) /
∑
i∈T

ti. (9)

Additionally, as some existing methods do not provide ac-
curacy results and instead use the Rand Index as an evaluation
metric, we have also employed the Rand Index to compare our
method with these approaches. The Rand Index proposed by
[54] is a widely used and comprehensive evaluation metric for
assessing the differences between two segmentation results.
Typically, it is computed by comparing the segmentation
results with manually labeled ground truth. A lower Rand

Index indicates a more significant similarity between two
segmentations, implying better segmentation performance of
the algorithm.

Implementation Details. We use the public Matlab imple-
mentation of DeepLabv3+ as the foundation for our auxiliary
model, which is trained using a batch size of 16 and an initial
learning rate of 0.005. Our primary network is implemented
based on MLP, which is trained with a batch size of 32 and
an initial learning rate of 0.001.

A. Experimental Datasets

In this section, we evaluate the performance of our method
and conduct a comprehensive comparison with various other
3D shape segmentation methods. For this purpose, we have se-
lected four benchmark datasets: PSB, COSEG, ShapeNetCore,
and Human Body.

The PSB dataset, initially presented by Chen et al. [54],
has 19 categories, each including 20 3D shapes. To ensure
an unbiased evaluation, we employ ground truth segmentation
labels provided by Kalogerakis et al. [11] as a standard for
evaluation. The COSEG dataset [55] is composed of two parts:
a small dataset with 190 shapes from 8 categories and a larger
dataset with 200, 400, and 300 shapes from the categories
of Tele-aliens, chairs, and vases, correspondingly. Similar to
the PSB dataset, most shapes in COSEG have undergone
preprocessing, leading to a topology well-suited for geometric
processing applications. The ShapeNetCore dataset is a subset
of the ShapeNet dataset described in [56]. To address the
issue of non-manifold shapes, we utilized a technique proposed
by [57] that converts such shapes into manifold ones. This
approach has been shown to improve the processing and
analysis of the dataset. The Human Body dataset [58] consists
of 370 training models from SCAPE, FAUST, MIT, and Adobe
Fuse and 18 testing models from the SHREC07 (humans)
dataset. These models were manually segmented into eight
labels corresponding to the labels provided by Kalogerakis et
al. [11].

B. Training Dataset Splitting

In each dataset category, when comparing with other fully
supervised methods, our approach employs two training data
splitting strategies: one combines 20% fully labeled shapes
with 40% scribble-based partially labeled shapes as training
data (1+2+2). The other combines 40% fully labeled shapes
with 20% scribble-based partially labeled shapes as training
data (2+1+2). The remaining 40% of shapes are designated
as the testing data. In contrast, all other fully supervised
methods in our comparisons use 60% fully labeled shapes
as their training data. Compared with other semi-supervised
methods, our approach uses 20% fully labeled shapes and
20% scribble-based partially labeled shapes as training data,
randomly selecting 40% of the remaining shapes as testing
data. Meanwhile, all other semi-supervised methods in our
comparisons use 40% fully labeled shapes and 20% unlabeled
shapes as their training data. It is noteworthy that all the
subsets used for training are randomly split.
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Fig. 5. Comparison with other three segmentation algorithms. The methods displayed are as follows: (a) Ground Truth, (b) Our method, (c) RandomWalks,
(d) WeaklyScribble, and (e) SEMI3.

Fig. 6. Several experimental results showcasing the performance of our method on the PSB dataset.

C. Experimental Results and Comparisons

In our work, we evaluated the effectiveness of our proposed
method by comparing it with various unsupervised, weakly
supervised, and semi-supervised methods on the PSB dataset.,
and conducted comparisons with fully supervised methods
across all datasets. To ensure a fair comparison, we extensively
referred to the results reported in the original papers of the
methods we compared against.

Comparison with unsupervised, weakly supervised, and
semi-supervised methods. We compared our method with Ran-
domWalks [24] and WcSeg [26], two unsupervised methods,
and a weakly supervised method named WeaklyScribble [44].
We also compared with three semi-supervised methods, in-
cluding SEMI-1 [45], SEMI-2 [46], and SEMI-3 [48]. As
shown in Table I, we compare our method with these methods
in terms of Rand Index scores on the PSB dataset. Our experi-
mental results demonstrate that our method outperforms other
unsupervised, weakly supervised, and semi-supervised meth-

ods in 9 out of 16 categories, achieving the lowest Rand Index
scores. Additionally, our proposed semi-supervised approach
achieved an average Rand Index score of 0.53, surpassing all
other methods compared. Figure 5 shows a qualitative com-
parison of our method with unsupervised, weakly supervised,
and semi-supervised methods on the Glasses, Cup, and Bird
models. Our experimental results demonstrate that our pro-
posed semi-supervised method exhibits superior segmentation
performance compared to other existing methods. This notable
achievement can be primarily attributed to incorporating our
self-refine module, which iteratively enhances the precision of
labels during the training process.

Comparison with supervised methods. On the PSB dataset,
we conducted comparisons with seven other fully supervised
methods, including ShapeBoost [11], Hu et al. [25], Wang et
al. [18], Guo et al. [15], ShapePFCN [16], MeshCNN [30],
and MeshWalker [31]. Based on the data in Table II, our
method achieved higher accuracy results in 8 categories than
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TABLE I
EVALUATING THE PERFORMANCE OF OUR METHOD AND COMPARING IT WITH OTHER UNSUPERVISED, WEAKLY SUPERVISED, AND SEMI-SUPERVISED

METHODS USING RAND INDEX SCORES ON THE PSB DATASET.

Methods RandomWalks
[24]

WcSeg
[26]

WeaklyScribble
[44]

SEMI-1
[45]

SEMI-2
[46]

SEMI-3
[48] Ours

Human 0.363 0.128 0.064 0.185 0.162 0.119 0.079
Cup 0.311 0.165 0.021 0.103 0.099 0.036 0.019

Glasses 0.395 0.175 0.048 0.181 0.176 0.150 0.036
Airplane 0.283 0.089 0.081 0.121 0.103 0.029 0.055

Ant 0.092 0.021 0.007 0.050 0.034 0.016 0.011
Chair 0.202 0.105 0.029 0.094 0.079 0.059 0.028

Octopus 0.135 0.029 0.022 0.051 0.039 0.019 0.020
Table 0.141 0.089 0.014 0.074 0.070 0.035 0.012
Teddy 0.116 0.057 0.068 0.056 0.045 0.050 0.054
Hand 0.236 0.112 0.078 0.118 0.104 0.054 0.048
Plier 0.277 0.086 0.050 0.103 0.094 0.087 0.045
Fish 0.381 0.203 0.100 0.196 0.178 0.118 0.112
Bird 0.250 0.103 0.092 0.098 0.094 0.050 0.030

Armadillo 0.200 0.080 0.065 0.132 0.118 0.098 0.059
Vase 0.253 0.162 0.101 0.184 0.165 0.141 0.112

FourLeg 0.431 0.153 0.148 0.167 0.134 0.150 0.129

Average 0.259 0.121 0.062 0.120 0.106 0.076 0.053

TABLE II
COMPARING OUR METHOD WITH OTHER SUPERVISED METHODS ON THE PSB DATASET.

Methods ShapeBoost
[11]

Hu
[25] [18] [15] ShapePFCN

[16]
MeshCNN

[30]
MeshWalker

[31]
Ours

(1+2+2)
Ours

(2+1+2)

Human 93.20% 70.40% 55.60% 91.22% 93.80% 74.76% 87.02% 92.80% 95.35%
Cup 99.60% 97.40% 99.60% 99.73% 93.70% 95.86% 99.54% 97.53% 99.10%

Glasses 97.20% 98.30% - 97.60% 96.30% 93.94% 96.11% 96.20% 97.46%
Airplane 96.10% 83.30% - 96.67% 92.50% 84.36% 96.20% 95.39% 97.15%

Ant 98.80% 92.90% - 98.80% 98.90% 91.83% 97.36% 98.17% 98.55%
Chair 98.40% 89.60% 99.60% 98.67% 98.10% 84.75% 97.61% 98.78% 99.30%

Octopus 98.40% 97.50% - 98.79% 98.10% 98.21% 97.86% 98.80% 99.02%
Table 99.30% 99.00% 99.60% 99.55% 99.30% 96.78% 99.33% 99.10% 99.47%
Teddy 98.10% 97.10% - 98.24% 96.50% 84.29% 95.57% 98.55% 98.88%
Hand 88.70% 91.90% - 88.71% 88.70% 68.83% 83.31% 82.88% 87.85%
Plier 96.20% 86.00% - 96.22% 95.70% 83.69% 92.24% 96.64% 96.64%
Fish 95.60% 85.60% - 95.64% 95.90% 89.05% 94.58% 95.79% 96.11%
Bird 87.90% 71.50% - 88.35% 86.30% 68.09% 92.76% 89.44% 90.88%

Armadillo 90.10% 87.30% - 92.27% 93.30% 50.24% 89.12% 90.01% 92.97%
Vase 85.80% 80.20% 90.50% 89.11% 85.70% 68.94% 84.56% 83.22% 88.52%

FourLeg 86.20% 88.70% 54.30% 87.02% 89.50% 68.73% 80.93% 84.32% 90.33%

Average 94.35% 88.54% - 94.79% 93.89% 81.40% 92.76% 94.10% 96.10%

TABLE III
COMPARING OUR METHOD WITH OTHER SUPERVISED METHODS ON THE

SMALL COSEG DATASET.

Methods [15] ShapePFCN
[16]

MeshCNN
[30]

Ours
(1+2+2)

Ours
(2+1+2)

Candelabra 85.90% 95.40% 83.52% 87.32% 93.28%
Chairs 93.80% 96.10% 92.87% 95.24% 97.05%
Fourleg 88.20% 90.40% 86.19% 90.48% 92.10%
Goblets 86.10% 97.20% 92.62% 93.76% 95.60%
Guitars 97.70% 98.00% 91.34% 98.15% 98.45%
Irons 79.70% 88.00% 81.26% 88.30% 90.39%

Lamps 78.00% 93.00% 83.64% 86.57% 90.15%
Vases 84.40% 84.80% 77.43% 85.60% 86.88%

Average 86.72% 92.86% 86.11% 91.93% 92.99%

other fully supervised algorithms and attained the best average
accuracy results. Figure 6 displays the qualitative results of our
algorithm on the PSB dataset, illustrating the segmentation
capabilities of our method when handling various 3D shapes.

Specifically, both our method and ShapePFCN utilize multi-
view projection techniques. However, our proposed semi-
supervised method leverages information from both 2D and
3D levels to effectively address the challenges associated with
geometric topological information loss and shape occlusion
in the multi-view projection process. This approach leads to a
significant reduction in the incidence of misclassification. Fig-
ure 7 shows an example of a qualitative comparison between
our method and ShapePFCN on the FourLeg category of the
PSB dataset.

On the small COSEG dataset, we also compared our
method with three fully supervised methods, including Guo
et al., ShapePFCN, and MeshCNN, as detailed in Table III.
Similarly, on the large COSEG dataset, our method was
compared against seven fully supervised methods, namely
MeshCNN, MeshWalker, PDMeshNet [33], HodgeNet [34],
SubdivNet [39], Laplacian2Mesh [35], and DGNet [40], with
specific results in Table IV. Our experimental results demon-
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TABLE IV
COMPARING OUR METHOD WITH OTHER SUPERVISED METHODS ON THE LARGE COSEG DATASET.

Methods MeshCNN
[30]

MeshWalker
[31]

PDMeshNet
[33]

HodgeNet
[34]

SubdivNet
[39]

Laplacian2Mesh
[35]

DGNet
[40]

Ours
(1+2+2)

Ours
(2+1+2)

Tele-aliens 95.76% 98.70% 98.18% 96.03% 97.30% 95.00% 97.40% 97.82% 98.55%
Chairs 94.54% 98.60% 97.23% 95.68% 96.70% 96.60% 96.70% 97.96% 99.05%
Vases 93.49% 99.90% 95.36% 90.30% 96.70% 94.60% 97.00% 96.36% 97.88%

Average 94.60% 98.77% 96.92% 94.00% 96.90% 95.40% 97.03% 97.38% 98.49%

TABLE V
COMPARING OUR METHOD WITH OTHER SUPERVISED METHODS ON THE SHAPENETCORE DATASET. WE USE THE ACCURACY (%) METRIC TO COMPARE

OUR METHOD WITH MESH-BASED METHODS AND THE MIOU (%) METRIC TO COMPARE WITH POINT-BASED METHODS.

Algorithms aero bag cap car chair eph. guitar knife lamp laptop motor mug pistol rocket skate. table mean

ShapeBoost [11] 85.8 93.1 85.9 79.5 70.1 81.4 89.0 81.2 71.7 86.1 77.2 94.9 88.2 79.2 91.0 74.5 83.0
[15] 87.4 91.0 85.7 80.1 66.8 79.8 89.9 77.1 71.6 82.7 80.1 95.1 84.1 76.9 89.6 77.8 82.9

ShapePFCN [16] 90.3 94.6 94.5 86.7 82.9 84.9 91.8 82.8 78.0 95.3 87.0 96.0 91.5 81.6 91.9 84.8 88.4
SEG-MAT [59] 83.7 - - - 80.3 82.1 90.9 83.2 - - - - - 74.3 79.6 80.4 81.8
Ours (1+2+2) 92.0 96.1 92.8 84.1 81.4 86.4 93.2 84.3 76.4 94.6 85.1 97.5 93.3 83.5 93.8 83.0 88.6

PartNet [29] 87.8 86.7 89.7 80.5 91.9 75.7 91.8 85.9 83.6 97.0 74.6 97.3 83.6 64.6 78.4 85.8 87.4
PCT [28] 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7 83.1

Point-BERT [60] 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5 84.1
Ours (1+2+2) 87.4 91.3 89.5 82.5 92.3 82.0 91.5 88.0 88.4 96.5 82.3 97.1 89.0 66.4 77.2 84.6 87.8

Fig. 7. Qualitative results for the FourLeg category of the PSB dataset. In
comparison with ShapePFCN, our method avoids mis-classifications.

strate that our method outperforms all other compared methods
on the small COSEG dataset, with an average accuracy rate
of 92.99%. However, on the large COSEG dataset, while
MeshWalker, a fully supervised method, outperforms our
proposed semi-supervised method, our method still achieves
the highest segmentation accuracy in the Chairs category.
Notably, our approach used less supervisory information and
achieved an average accuracy rate that was only 0.28% lower
than MeshWalker’s accuracy rate. Moreover, our results on the
PSB dataset outperform MeshWalker. We attribute our better
performance on the PSB dataset to the quality of scribble
annotations we employed on the PSB dataset. Furthermore,
our method outperformed all other fully supervised methods
in the comparison. Figures 8 and 9 showcase the qualitative
results of our method on the COSEG dataset.

In addition, to further evaluate the performance of our
method, we conducted experiments on the ShapeNetCore

Fig. 8. Several experimental results demonstrating the performance of our
method on the COSEG small dataset.

and Human Body datasets. On the ShapeNetCore dataset,
we compared our method with seven fully supervised meth-
ods, including four mesh-based methods: ShapeBoost, Guo’s
method, ShapePFCN, and SEG-MAT [59], as well as point-
based methods: PartNet [29], PCT [28], and Point-BERT [60].
The detailed results of these comparisons can be found in
Table V. We employed the accuracy(%) evaluation metric
when comparing with mesh-based methods and the mIoU(%)
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Fig. 9. Some experimental results of our method on the COSEG large dataset.

TABLE VI
THE ACCURACY OF SEGMENTATION ON THE HUMAN BODY DATASET

COMPARED WITH OTHER SUPERVISED METHODS.

Method Accuracy Method Accuracy

[58] 88.00% MDGCNN [61] 88.61%
PFCNN [62] 91.45% HodgeNet [34] 85.03%

SubdivNet [39] 91.70% DiffusionNet [63] 90.80%

Ours 93.15%

evaluation metric when comparing with point-based methods.
Similarly, on the Human Body dataset, we compared our
method with fully supervised methods such as Maron et
al. [58], MDGCNN [61], PFCNN [62], HodgeNet, SubdivNet,
and DiffusionNet [63]. The comparative results are shown in
Table VI. We achieve the highest average evaluation scores on
the ShapeNetCore and Human Body datasets, and Figure 10
displays the segmentation results of our algorithm on the
ShapeNetCore and the Human Body dataset.

To further validate the efficacy and stability of our pro-
posed method, we conducted comparative experiments on the

Fig. 10. Several experimental results demonstrating the performance of our
method on the ShapeNetCore and the Human Body dataset.

TABLE VII
COMPARISON OF AVERAGE ACCURACY RESULTS UNDER DIFFERENT

TRAINING DATASET SIZES.

Method 30% 50% 80% 100%

MeshCNN [30] 75.07% 87.22% 89.21% 90.84%
MeshWalker [31] 70.00% 72.03% 87.02% 91.37%

Ours 90.04% 92.36% 93.33% 93.52%

Human Body dataset, selecting two fully supervised methods,
MeshCNN and MeshWalker, as baselines. Using the complete
training dataset as a standard, we trained MeshCNN, Mesh-
Walker, and our method with 30%, 50%, 80%, and 100% of
the complete training dataset as the actual training dataset.
Specifically, for our method, we divided the training dataset
into two parts: two-thirds as dataset F and the remaining
third using only the corresponding scribble labels as dataset S.
Subsequently, we tested the shapes on the complete test dataset
provided by the Human Body dataset. As shown in Table VII,
the average accuracy of MeshCNN and MeshWalker methods
on the test dataset significantly decreased with the reduction
of fully labeled training data. In contrast, our proposed semi-
supervised framework maintained an average accuracy of
about 90%. This result demonstrates that our proposed semi-
supervised framework is more stable with the reduction of
fully labeled data and can still achieve excellent segmentation
performance with less training data.

D. Ablation Study

In this section, we conducted ablation experiments on the
critical components of our algorithm.

1) Network Architecture: To validate the contributions of
each component within our proposed semi-supervised frame-
work to the final segmentation network’s effectiveness, we
conducted an in-depth analysis to evaluate the influence of
different components on segmentation performance. As illus-
trated in Figure 11, we performed comprehensive evaluations
on four datasets: PSB, Large COSEG, ShapeNetCore, and
Human Body. The qualitative results are shown in Table VIII.
Our visual representations and data revealed several key ob-
servations:

• Even when trained on a small, fully labeled 3D shape
dataset, the auxiliary model is still capable of accurately
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TABLE VIII
ABLATION STUDY EXPERIMENTS ON NETWORK FRAMEWORK.

Module Auxiliary Only No Self-Refine With Self-Refine

PSB 83.26% 89.37% 96.10%
Large COSEG 83.72% 91.60% 98.49%
ShapeNetCore 75.36% 82.66% 88.60%
Human Body 79.00% 87.15% 93.15%

TABLE IX
ABLATION STUDY EXPERIMENTS ON THE THICKNESS OF SCRIBBLE

ANNOTATION.

Shrink Rate 1.0 0.7 0.5 0.2

Human 78.04% 84.23% 89.16% 92.80%
Ant 85.29% 89.22% 96.97% 98.17%

Chair 86.81% 90.42% 96.07% 98.78%
Hand 66.10% 72.54% 78.81% 82.88%

predicting the 3D shape segmentation labels based on
sparse scribble labels.

• The network with the convolutional self-refine module
achieves superior prediction results compared to the net-
work without this module. This finding validates our
approach of combining the primary network and the
auxiliary network to jointly infer label predictions for
3D shapes in dataset S, leading to improved training
performance of the primary network.

2) Sensitivities to Scribble Quality: We explored the sen-
sitivity of our method to the quality of scribble annotations
in two key aspects. Firstly, we investigated the influence of
scribble thickness on experimental results. The segmentation
accuracy of four shape categories in the PSB dataset was
presented in Table IX, with varying degrees of shrink applied
to manually labeled scribbles. Examples of various shrink rates
are illustrated in Figure 12. Our observations indicated that
as the shrink rate increased, the accuracy of segmentation
predictions decreased, which was consistent with our expec-
tations. Furthermore, we noted that even when only one face
was labeled with scribble (shrink rate equals 1), the network
achieved an accuracy close to half in its predictions.

Secondly, we investigated the influence of scribble shapes
on experimental results. As shown in Table X, we presented
the effects of four different scribble shapes on the average
segmentation accuracy in the PSB dataset, with examples
of these scribble shapes depicted in Figure 13. The results
showed that while there was some variation in accuracy across
different scribble shapes, the effect was not statistically sig-
nificant. Instead, the proportion of faces covered by scribbles
is the primary determinant of experiment performance, as it
determines the amount of ground truth label information the
algorithm can use.

3) Input Feature Descriptors: In Figure 14 and Table XI,
our ablation experiments indicate that the optimal feature
vector setup is 122 dimensions. We have attempted to extract
features directly from 3D shapes using other networks, but
the results were unsatisfactory. Unfortunately, high-quality
training data is still insufficient for us to learn effective features
for 3D shape processing. This limitation significantly hinders

TABLE X
ABLATION STUDY EXPERIMENTS ON THE DIFFERENT SHAPES OF

SCRIBBLE ANNOTATION.

Scribble Shape line dashes rectangle cycle

Accuracy 96.10% 95.17% 96.42% 96.27%

TABLE XI
ABLATION STUDY OF DIFFERENT INPUT FEATURE DESCRIPTORS.

Descriptors SDF SDF
+AGD

SDF
+AGD
+GC

SDF
+AGD
+GC

+WKS

SDF
+AGD
+GC

+WKS
+SIHKS

Human 81.57% 85.79% 88.63% 91.28% 92.80%
Ant 92.58% 94.15% 96.88% 97.79% 98.17%

Chair 88.72% 91.35% 95.78% 97.50% 98.78%
Hand 65.80% 68.47% 73.65% 79.44% 82.88%

our learning-based approach from achieving more satisfactory
results.

E. Performance

We implemented the proposed algorithm using Matlab,
Python, and C++. Our approach was tested on a PC with an
Intel Core i7 CPU, 32GB of RAM, and an NVIDIA GeForce
GTX 3090 GPU. Our semi-supervised method consists of
two main phases, including the training phase and the testing
phase. In the training phase, our algorithm takes about 10
minutes to train a single category shape. In the testing phase,
segmenting an unlabeled shape takes about 20 seconds. The
entire pipeline for a category shape on the PSB dataset takes
approximately 20 minutes.

V. LIMITATIONS AND FUTURE WORK

Although the method proposed in this paper is effective in
various 3D shape segmentation tasks, it has some limitations.
Firstly, the method heavily relies on various hand-crafted
feature descriptors and therefore requires manifold 3D shapes
as input. In the future, we aim to extend our method to handle
non-manifold 3D shapes. Secondly, similar to other learning-
based 3D shape segmentation methods, our neural network
is limited to the same category of testing 3D shapes as the
training 3D shapes to obtain satisfactory segmentation results.
We plan to work on generalizing our method to apply across
different categories in the future.

VI. CONCLUSION

We propose a novel semi-supervised framework for 3D
shape segmentation that leverages a small, fully labeled
dataset containing face-level semantic segmentation labels
and a sparsely scribble-labeled dataset. Our framework ini-
tially trains an auxiliary network to generate initial face-level
segmentation labels for the sparsely scribble-labeled dataset,
assisting in training the primary segmentation network. During
training, the self-refine module improves the labels of the
scribble-labeled dataset used to train the primary network by
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Fig. 11. Ablation Experiments on Network Framework: (a) shows the original unlabeled 3D shape. (b) displays the fully labeled ground truth. (c) presents
the prediction results using only the auxiliary network. (d) showcases the prediction results obtained by combining the primary network and the auxiliary
network. Finally, (e) illustrates the prediction results with the addition of the convolutional self-refine module to the primary and auxiliary network framework.

Fig. 12. Ablation Experiments on the thickness of scribble annotation: The
figure demonstrates the influence of different scribble shrink rates on the
accuracy of segmentation label predictions. The horizontal axis represents
different scribble shrink rates: (a) 1.0, (b) 0.7, (c) 0.5, (d) 0.2.

Fig. 13. Ablation Experiments on different scribble annotation shapes: (a)
line, (b) dashes, (c) rectangle, (d) cycle.

utilizing the increasingly accurate predictions of the primary
model. Our comprehensive benchmark results demonstrate
that our proposed method surpasses previous semi-supervised
approaches in segmentation performance and achieves compa-
rable performance to fully supervised methods.
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Fig. 14. Ablation Experiments on Feature Descriptors: The figure illustrates
the influence of different feature descriptor selections on the accuracy of
segmentation label predictions. The horizontal axis represents different com-
binations of feature descriptors: (a) SDF, (b) SDF + AGD, (c) SDF + AGD
+ GC, (d) SDF + AGD + GC + WKS, (e) SDF + AGD + GC + WKS +
SIHKS.
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[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[33] F. Milano, A. Loquercio, A. Rosinol, D. Scaramuzza, and L. Carlone,
“Primal-dual mesh convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 33, pp. 952–963, 2020.

[34] D. Smirnov and J. Solomon, “HodgeNet: Learning spectral geometry
on triangle meshes,” ACM Transactions on Graphics, vol. 40, no. 4, pp.
1–11, 2021.

[35] Q. Dong, Z. Wang, M. Li, J. Gao, S. Chen, Z. Shu, S. Xin, C. Tu,
and W. Wang, “Laplacian2mesh: Laplacian-based mesh understanding,”
IEEE Transactions on Visualization and Computer Graphics, 2023.

[36] H. Xu, M. Dong, and Z. Zhong, “Directionally convolutional networks
for 3D shape segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2698–2707.

[37] Y. Feng, Y. Feng, H. You, X. Zhao, and Y. Gao, “Meshnet: Mesh
neural network for 3D shape representation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 8279–8286.

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2024.3374200

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, MONTH YEAR 14

[38] X. Li, R. Li, L. Zhu, C.-W. Fu, and P.-A. Heng, “DNF-Net: A deep
normal filtering network for mesh denoising,” IEEE Transactions on
Visualization and Computer Graphics, vol. 27, no. 10, pp. 4060–4072,
2020.

[39] S.-M. Hu, Z.-N. Liu, M.-H. Guo, J.-X. Cai, J. Huang, T.-J. Mu, and
R. R. Martin, “Subdivision-based mesh convolution networks,” ACM
Transactions on Graphics, vol. 41, no. 3, pp. 1–16, 2022.

[40] X.-L. Li, Z.-N. Liu, T. Chen, T.-J. Mu, R. R. Martin, and S.-M.
Hu, “Mesh neural networks based on dual graph pyramids,” IEEE
Transactions on Visualization and Computer Graphics, pp. 1–14, 2023.

[41] T. Le, G. Bui, and Y. Duan, “A multi-view recurrent neural network for
3D mesh segmentation,” Computers & Graphics, vol. 66, pp. 103–112,
2017.

[42] M. Rong, H. Cui, and S. Shen, “Efficient 3D scene semantic segmenta-
tion via active learning on rendered 2D images,” IEEE Transactions on
Image Processing, vol. 32, pp. 3521–3535, 2023.

[43] S. He, X. Jiang, W. Jiang, and H. Ding, “Prototype adaption and
projection for few-and zero-shot 3D point cloud semantic segmentation,”
IEEE Transactions on Image Processing, 2023.

[44] Z. Shu, X. Shen, S. Xin, Q. Chang, J. Feng, L. Kavan, and L. Liu,
“Scribble based 3D shape segmentation via weakly-supervised learning,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26,
no. 8, pp. 2671–2682, 2020.

[45] Y. Zhuang, M. Zou, N. Carr, and T. Ju, “Anisotropic geodesics for live-
wire mesh segmentation,” Computer Graphics Forum, vol. 33, no. 7, pp.
111–120, 2014.

[46] Y. Zhuang, H. Dou, N. Carr, and T. Ju, “Feature-aligned segmentation
using correlation clustering,” Computational Visual Media, vol. 3, no. 2,
pp. 147–160, 2017.

[47] A. Tao, Y. Duan, Y. Wei, J. Lu, and J. Zhou, “SegGroup: Seg-
level supervision for 3D instance and semantic segmentation,” IEEE
Transactions on Image Processing, vol. 31, pp. 4952–4965, 2022.

[48] Z. Shu, S. Yang, H. Wu, S. Xin, C. Pang, L. Kavan, and L. Liu,
“3D shape segmentation using soft density peak clustering and semi-
supervised learning,” Computer-Aided Design, vol. 145, p. 103181,
2022.

[49] L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang, “Con-
textual part analogies in 3D objects,” International Journal of Computer
Vision, vol. 89, no. 2, pp. 309–326, 2010.

[50] R. Gal and D. Cohen-Or, “Salient geometric features for partial shape
matching and similarity,” ACM Transactions on Graphics, vol. 25, no. 1,
pp. 130–150, 2006.

[51] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning
and skeletonisation using the shape diameter function,” The Visual
Computer, vol. 24, no. 4, pp. 249–259, 2008.

[52] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures
for non-rigid shape recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2010, pp. 1704–1711.

[53] D. Raviv, M. M. Bronstein, A. M. Bronstein, and R. Kimmel, “Volu-
metric heat kernel signatures,” in Proceedings of the ACM Workshop on
3D Object Retrieval. ACM, 2010, pp. 39–44.

[54] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3D
mesh segmentation,” ACM Transactions on Graphics, vol. 28, no. 3, pp.
1–12, 2009.

[55] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or, and B. Chen,
“Active co-analysis of a set of shapes,” ACM Transactions on Graphics,
vol. 31, no. 6, pp. 1–10, 2012.

[56] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “ShapeNet: An information-
rich 3D model repository,” arXiv preprint arXiv:1512.03012, 2015.

[57] O. v. Kaick, H. Zhang, and G. Hamarneh, “Shape segmentation by
approximate convexity analysis,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 4, pp. 669–685, 2010.

[58] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G.
Kim, and Y. Lipman, “Convolutional neural networks on surfaces via
seamless toric covers,” ACM Transactions on Graphics, vol. 36, pp. 1–
10, 2017.

[59] C. Lin, L. Liu, C. Li, L. P. Kobbelt, B. Wang, S. Xin, and W. Wang,
“SEG-MAT: 3D shape segmentation using medial axis transform,” IEEE
Transactions on Visualization and Computer Graphics, vol. 28, pp.
2430–2444, 2022.

[60] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-BERT:
Pre-training 3D point cloud transformers with masked point modeling,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 19 313–19 322.

[61] A. Poulenard and M. Ovsjanikov, “Multi-directional geodesic neural
networks via equivariant convolution,” ACM Transactions on Graphics,
vol. 37, no. 6, pp. 1–14, 2018.

[62] Y. Yang, S. Liu, H. Pan, Y. Liu, and X. Tong, “PFCNN: Convolutional
neural networks on 3D surfaces using parallel frames,” in Proceedings
of IEEE Computer Vision and Pattern Recognition, 2020, pp. 13 578–
13 587.

[63] N. Sharp, S. Attaiki, K. Crane, and M. Ovsjanikov, “DiffusionNet:
Discretization agnostic learning on surfaces,” ACM Transactions on
Graphics, vol. 41, no. 3, pp. 1–16, 2022.

Zhenyu Shu earned his PhD degree in 2010 at Zhe-
jiang University, China. He is now working as a full
professor at NingboTech University. His research in-
terests include image processing, computer graphics,
digital geometry processing, and machine learning.
He has published over 40 papers in international
conferences or journals.

Teng Wu is a graduate student of the College
of Computer Science and Technology at Zhejiang
University. His research interests include image pro-
cessing, computer graphics, and machine learning.

Jiajun Shen is a graduate student of the School
of Software Technology at Zhejiang University. His
research interests include computer graphics, geo-
metric processing and computer vision.

Shiqing Xin is an associate professor at the School
of Computer Science and Technology at Shandong
University. He received his PhD degree in applied
mathematics at Zhejiang University in 2009. His re-
search interests include image processing, computer
graphics, computational geometry, and 3D printing.

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2024.3374200

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, MONTH YEAR 15

Ligang Liu received the BSc and PhD degrees
from Zhejiang University, China, in 1996 and 2001,
respectively. He is a professor at the University of
Science and Technology of China. Between 2001
and 2004, he was at Microsoft Research Asia. Then
he was at Zhejiang University during 2004 and 2012.
He paid an academic visit to Harvard University
during 2009 and 2011. His research interests include
geometric processing and image processing. He
serves as the associated editors for journals of IEEE
Transactions on Visualization and Computer Graph-

ics, IEEE Computer Graphics and Applications, Computer Graphics Forum,
Computer Aided Geometric Design, and The Visual Computer. His research
works could be found at his research website: http://staff.ustc.edu.cn/lgliu

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2024.3374200

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


