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Detecting points of interest is a fundamental problem in 3D shape analysis and can be beneficial to various
tasks in multimedia processing. Traditional learning-based detection methods usually rely on each vertex’s
geometric features to discriminate points of interest from other vertices. Observing that points of interest are
related to not only geometric features on themselves but also the geometric features of surrounding vertices,
we propose a novel context-aware 3D points of interest detection algorithm by adopting the spatial attention
mechanism in this paper. By designing a context attention module, our approach presents a novel deep neural
network to simultaneously pay attention to the geometric features of vertices and their local contexts during
extracting points of interest. To obtain satisfactory extraction results, our method adaptively assigns different
weights to those features in a data-driven way. Extensive experimental results on SHREC 2007, SHREC 2011,
and SHREC 2014 datasets show that our algorithm achieves superior performance over existing methods.

CCS Concepts: • Computing methodologies→ Shape analysis.

Additional Key Words and Phrases: 3D point of interest, deep learning, attention mechanism

ACM Reference Format:
Zhenyu Shu, Ling Gao, Shun Yi, Fangyu Wu, Xin Ding, Ting Wan, and Shiqing Xin. 2023. Context-aware 3D
Points of Interest Detection via Spatial Attention Mechanism. ACM Trans. Multimedia Comput. Commun. Appl.
37, 4, Article 111 (March 2023), 19 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Corresponding author.

Authors’ addresses: Zhenyu Shu, shuzhenyu@nit.zju.edu.cn, School of Computer and Data Engineering, NingboTech
University, Ningbo, Zhejiang, China, 315100 and Ningbo Institute, Zhejiang University, Ningbo, Zhejiang, China, 315100;
Ling Gao, 1404919041@qq.com, School of Computer and Data Engineering, NingboTech University, Ningbo, Zhejiang,
China, 315100; Shun Yi, ys331_paper@163.com, School of Computer and Data Engineering, NingboTech University, Ningbo,
Zhejiang, China, 315100 and School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, China, 310027;
Fangyu Wu, fangyu.wu@zju.edu.cn, School of Computer and Data Engineering, NingboTech University, Ningbo, Zhejiang,
China, 315100; Xin Ding, XDing07@163.com, School of Computer and Data Engineering, NingboTech University, Ningbo,
Zhejiang, China, 315100; Ting Wan, 771716519@qq.com, School of Computer and Data Engineering, NingboTech University,
Ningbo, Zhejiang, China, 315100; Shiqing Xin, xinshiqing@163.com, School of Computer Science and Technology, ShanDong
University, Qingdao, Shandong, China, 315100.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1551-6857/2023/3-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: March 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


111:2 Shu et al.

Fig. 1. POIs detected by our method.

1 INTRODUCTION
Extracting points of interest (POIs) is a fundamental problem in multimedia processing. Many
tasks rely on robust and effective POI extraction algorithms to obtain satisfactory results, such as
viewpoint selection [12], 3D mesh segmentation [20], 3D mesh registration [35, 42], and 3D shape
retrieval [4, 6, 39]. Usually, geometric features are regarded as being closely related to judging
whether a vertex is a POI on 3D shapes. Therefore, early POIs detection approaches [7, 10] heavily
rely on various geometric features of each vertex to effectively extract POIs on 3D shapes.
Recently, data-driven techniques have shown their powerful capabilities in various tasks, such

as 3D shape segmentation [29, 31] and 3D shape retrieval [14]. POIs extraction can be deemed as a
classification problem, which builds a mapping from the geometric features of each face to whether
the face is a POI or not. Therefore, recent POI extraction algorithms begin to focus on employing
various data-driven classification approaches, such as decision trees, supported vector machines,
and even deep neural networks [30, 32], to achieve satisfactory performance.

Although existing data-driven approaches can obtain better performance than non-data-driven
ones, they usually only consider geometric features on a single vertex and lack information from
surrounding vertices when learning the relationship between geometric features and POIs.
To analyze and understand complex 3D shapes more effectively, in this paper, we propose a

novel POIs detection algorithm by considering both the geometric features of each vertex and the
features of its surroundings. To adaptively assign different weights to the features of each vertex
and its surroundings in a data-driven way, our algorithm employs the attention context module by
introducing the spatial attention mechanism. Extensive experimental results on public datasets
show that our method achieves superior performance over existing approaches. Figure 1 shows an
example of POIs detected by our method.

The contributions of this paper are three-fold:

• Rather than estimate the POI saliency in a vertex-wise style, in this paper, we also take the
spatial context into account, i.e., the POI saliency of a vertex is evaluated with the help of its
surrounding vertices, which is more in accordance with human intuition.

• It is difficult to explicitly evaluate how the surrounding vertices influence the base vertex on
the POI detection problem. In this paper, we use the attention mechanism to adaptively learn
the geometry-aware influence. To our best knowledge, this is the first time that the attention
mechanism is used to improve the performance of POI detection.

• Extensive experimental results on multiple datasets show that our algorithm obtains better
performance than previous approaches.

The remaining parts of the paper are organized as follows. In Section 2, we briefly review the
related work of POIs detection. The details of our method are then described in Section 3. After
that, we show extensive experimental results and the comparison between our method and existing

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: March 2023.



Context-aware 3D Points of Interest Detection via Spatial Attention Mechanism 111:3

ProbabilityVertex-

Fig. 2. The overall workflow of our algorithm. Our method takes a 3D model as the input and the predicted
probability of each vertex becoming a POI as the output. POIs are extracted by the POI auto-extraction
module according to the predicted probability of each vertex.

state-of-the-arts in Section 4. The limitation and future work of our approach is pointed out in
Section 5. Finally, we conclude this paper in Section 6.

2 RELATEDWORK
POIs extraction originates in computer vision and has also been extensively studied in multimedia
processing since then. Generally, POIs have some specific semantic features and are consistent
with human visual perception. In recent years, many geometric processing tasks are deemed as
relating to POIs, such as shape retrieval [4, 6, 39], facial expression recognition [2], 3D model
segmentation [20], and mesh registration [35, 42]. However, since different geometric processing
tasks require different POIs annotation results, it is hard to define a common rule to automatically
judge whether a given vertex is a POI or not for any purpose. Therefore, it still remains a challenging
problem for robust and effective POIs detection.

The geometric features play an important role in distinguishing POIs from other common vertices.
Some early work directly detects POIs based on measuring the differences between the geometric
features of vertices. Several well-known feature descriptors are often used when extracting POIs on
3D shapes. For example, Zou et al. [44] proposed a shape descriptor based on a Gaussian function,
which first computes a Gaussian function on a geodesic-scale space surface, and then obtains the
local extrema of the Gaussian function to detect POIs. This descriptor can simultaneously detect
POIs on manifold or non-manifold surfaces. Wang et al. [37] also used a Gaussian function to
calculate the features of each vertex, and selected all the vertices that could be POIs according to
the curvature of the vertex. Furthermore, Lee et al. [22] defined scale-dependent mesh saliency
using a center-surround operator on a weighted Gaussian curvature to select salient vertices on the
mesh. Gelfand et al. [15] proposed an integral volume descriptor, which integrates the underlying
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model to obtain eigenvalues, and then extracts POIs on the shape based on this eigenvalue. Inspired
by scale-invariant feature transformation, Godila et al. [17] proposed a descriptor of local features
of the computational model on a 3D voxel-based model to extract POIs. Castellani et al. [5] also
proposed a local feature descriptor, which is defined by a hidden Markov model. The approach
assigns the feature to vertices using contextual information, and detects 3D model vertices across
multiple views through the similarities of vertices on 3D models.

Recently, with the development of machine learning and deep learning, data-driven approaches
are proposed to learn the relationship between the geometric features of vertices and POIs to achieve
satisfactory results during extracting POIs. Creusot et al. [9] proposed a method to automatically
detect POIs on a 3D face model by using machine learning techniques. The method first uses
geometric feature descriptors to calculate feature vectors for every vertex, and then learns a
classification model to distinguish between POIs and common vertices, and finally detects POIs on
the new shapes by using the learned model. Teran et al. [36] defined the task of POIs detection
as a supervised binary classification problem of vertices on a 3D shape. The approach extracts
POIs by applying the trained random forest classifier. Nousias et al. [24] presented a novel, efficient
saliency detection method for 3D shapes by utilizing baseline 3D importance maps and training
corresponding convolutional neural networks. Chen et al. [7] first analyzed the local curvature
features and global features of POIs, and then used a random forest algorithm to combine the
features into a regression model to predict the location of POIs on new shapes. He et al. [19]
proposed a deep Hough voting network to detect 3D POIs on the surface of given 3D shapes. Wei
et al. [38] proposed a novel multi-task joint learning network architecture for estimating 3D POIs.

Besides geometric features of vertices, some haptic or projection-based methods are also used to
detect POIs on 3D shapes. Lau et al. [21] proposed a tactile-based method for computing vertex
saliency, which first maps a 3D model into multiple 2D depth images, and then establishes a
regression model between depth images and tactile saliency based on a ranking mechanism, and
finally uses the trained network model to predict the protruding vertices on 3D shapes. Shu et
al. [32] projected the manually annotated 3D shapes onto 2D images from different angles, then
trained a convolutional neural network on these 2D images to predict the probability value of
each vertex being a POI or not on 3D shapes, and finally used a clustering method to extract POIs.
Although this method can avoid the limitation of geometric feature descriptors, geometric details
on 3D shapes are easily occluded during projection. Projecting 3D shapes into multiple 2D views
from different angles may relieve the problem in some degree, while increasing the number of
views will inevitably lead to a heavier computation burden. Shu et al. [30] designed a deep neural
network using stacked auto-encoders, and predicted the probability of each vertex on 3D shapes
becoming a POI through the trained network. However, this algorithm only utilizes the geometric
features of a single vertex and ignores the feature information of the local context of the vertex.

More recently, the attention mechanism, which can be deemed as a dynamic weight adjustment
process, is proposed to imitate the human visual system and has achieved great success in various
tasks, such as image segmentation [8], image captioning [41], image dehazing [34], and point
cloud recognition [43]. For example, Yu et al. [40] propose a novel multimodal transformer and
joint model of self-attention and co-attention interactions for image captioning. Guo et al. [18]
present normalized self-attention, which is an effective reparameterization of self-attention and can
bring the benefits of the normalization technique inside self-attention. They both achieve superior
performance over existing methods on publicly available benchmarks.

In order to fully consider the impact of feature information from surroundings, this paper proposes
a novel POIs extraction algorithm based on the spatial attention mechanism, which considers not
only the geometric features of vertices themselves, but also the ones from surrounding vertices.
We present the context attention module to dynamically assign different weights to the features
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Fig. 3. Generating probability distribution of POIs on a Rabbit model. Note that POIs are far fewer than other
normal vertices.

of each vertex and its surroundings in a data-driven way, so that our method can achieve more
satisfactory results than existing algorithms.

3 OUR METHOD
3.1 Overview
Figure 2 shows the overall workflow of our method. In the training process, the features of the
vertex and its context are used as input, and the label of the vertex is used as the output. In the
testing process, the features of the vertex and its context on the test model are used as the input,
and the predicted probability of each vertex becoming a POI is the output. We finally obtain POIs
on the shape by using the POI auto-extraction module. The computation process of the network
can be described as 

𝑀 = 𝐹𝑎𝑔𝑔 (𝑋 ),
𝑀 ′ = 𝐾 ∗𝑀,
𝑆𝑠 = 𝐹𝑎𝑡𝑡 (𝑀 ′),
𝑝 = 𝜙 (𝑊 (𝑓𝑝 (𝐾 ∗ 𝑆𝑠 )) + 𝑏).

(1)

where, 𝑋 is the feature vector of each vertex, 𝐹𝑎𝑔𝑔 (·) is the context feature extraction module that
can aggregate the features of the local context of the vertex into a three-dimensional tensor𝑀 , 𝐾 is
the convolution kernel, ∗ is the convolution operation, and 𝐹𝑎𝑡𝑡 (·) is the context attention module.
𝑆𝑠 is the feature vector after the spatial attention mechanism assigns weights to different features.
𝑓𝑝 (·) is a pooling function.𝑊 and 𝑏 are the weights and biases in the fully connected layer. 𝜙 is the
activation function. 𝑝 is the predicted probability of the vertex. Our method uses the mean squared
error loss function to measure the difference between the predicted result and the ground truth,
and is optimized by the stochastic gradient descent algorithm. The loss function of our network is

𝐿𝑜𝑠𝑠 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (2)

where 𝑛 represents the number of vertices, 𝑦𝑖 represents the predicted probability of the vertex,
and 𝑦𝑖 represents the ground truth of the vertex.

3.2 Generating probability distribution of POIs
Typically, there exist thousands of vertices on a 3D shape. However, only very few vertices are
considered as POIs. For example, as shown in Figure 3, a Rabbit model in the SHREC 2011 dataset
is only annotated with 8 POIs, while it has 9448 common vertices in total. If we simply regard
the problem of POIs extraction as a classification task, it will bring a severe imbalance of training
samples in the neural network training process.
To solve the above problem, we assign a probability of being a POI to each vertex on 3D

shapes using energy decay through the vertex-probability assignment module. For a vertex 𝑝𝑖 , its
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Fig. 4. Context feature extraction module of POI extraction algorithm. This module encodes the features of
the vertex and its surrounding vertices to a matrix and uses them as the input of our deep neural network.

probability 𝜌𝑖 is calculated as

𝜌𝑖 =
1

𝜎
√
2𝜋

exp(−𝑑2 (𝑣𝑖 , 𝑝𝑖 ))/(2𝜎2), (3)

where 𝑑 (𝑣𝑖 , 𝑝𝑖 ) represents the geodesic distance between the vertex 𝑝𝑖 and its closest POI 𝑣𝑖 , 𝜎
is a parameter that controls the speed of energy decay, and the default value is set to 0.1. The
probabilities 𝜌 of all vertices on the surface of the model are normalized. Figure 3 shows an example
of generated probabilities according to the manually annotated POIs on a Rabbit model.

3.3 Context Feature Extraction Module
Different from previous learning-based methods [30], our algorithm predicts the probability of
a vertex being a POI based on not only the geometric features of a single vertex, but also the
features of the vertex’s surrounding vertices. For this reason, our algorithm proposes a context
feature extraction module to encode the features of vertices and their contexts. As shown in
Figure 4, this module mainly includes two steps: extracting vertex features and aggregating context
vertices’ features. As shown in Figure 4, the feature vectors of each vertex are first extracted
using various hand-crafted feature descriptors, including Gaussian Curvature [13] (GC), Average
Geodesic Distance [27] (AGD), Shape Diameter Function [28] (SDF), Scale-Invariant Heat Kernel
Signature [3] (SIHKS), and Wavelet Kernel Signature [1] (WKS).

Since each vertex’s probability of being a POI is related to the geodesic distance between the point
and its nearest POI, the context feature extraction module proposed in our algorithm aggregates the
contextual feature information of the vertex according to the geodesic distance between vertices.
Our algorithm first computes the features of each vertex and then combines them into a feature
matrix 𝑋 of 𝐻 × 𝐻 ×𝐶 . In 𝑋 , 𝑋 (1, 1, ∗) represents the feature vector of the vertex 𝑣 itself. We then
put the features of the neighbor vertices into 𝑋 (1, 2, ∗), 𝑋 (1, 3, ∗), · · ·, and 𝑋 (5, 5, ∗) according to
geodesic distances.
In this way, the features of each vertex and its neighboring 24 vertices are aggregated in the

same feature matrix. The feature matrix is then nonlinearly combined and transformed through
convolution operations. Our experimental results show that considering each vertex’s context does
improve the accuracy of POIs extraction, which is presented in Section 4.
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Fig. 5. Context attention module of our POIs extraction algorithm. This module simultaneously considers the
feature of each vertex and its local context during computing the probabilities of each vertex by dynamically
weights assignment.

3.4 Context Attention Module
During the process of extracting POIs, the POI auto-extraction module selects vertices with local
peak values as POIs according to the probabilities of vertices. It means that the probabilities of
adjacent vertices will decide whether the vertex can be extracted as a POI. Therefore, in the process
of computing the probabilities, we should consider not only the geometric feature of the vertex
itself, but also the impact of the local contextual features.

To consider the impact from the context of a vertex, our algorithm proposes a context attention
module, which considers the feature of the vertex’s context in the process of computing the
probabilities of the vertex through the spatial attention mechanism and dynamically weights
assignment.
Figure 5 shows the internal structure of the context attention module in detail. In this module,

the maximum response of the feature is first calculated by the max pooling layer, and then the
non-linear combination of the feature is calculated by the convolution layer and the activation
layer. The average value of the features in the receptive field is calculated by the average pooling
layer and then passed through the convolution operation. Finally, the convolved features and the
original features are added channel by channel. The computation process of this module can be
described as 

𝑀 ′ = 𝐾 ∗ 𝐹𝑚𝑎𝑥 (𝑀),
𝐴 = 𝐾 ′ ∗ 𝐹𝑎𝑣𝑔 (𝑀 ′),
𝑆𝑠 = 𝐹𝑎𝑑𝑑 (𝑀,𝐴),

(4)

where𝑀 is the input feature, 𝐹max (·) is the maximum pooling function which is used to calculate the
maximum response of𝑀 , 𝐾 and 𝐾 ′ is the convolution kernel, ∗ is the convolution operation, 𝐹𝑎𝑔𝑣 (·)
is the average pooling function, and 𝐹𝑎𝑑𝑑 (·) is the addition between features of the same size which
adds the input features𝑀 and 𝐴 channel by channel. The numbers of filters in each convolution
layer are 64, 32, 16, and 8, respectively. The size of each filter is 3*3. The output dimensions of the
two FC layers in the network are 4 and 1, respectively. Note that the dimension of features does
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Fig. 6. The curve function used to extract POIs automatically in the decision graph for a Rabbit model.

not change after each layer calculation, which is always 5x5x32 in this paper. This module uses the
context attention to simultaneously pay attention to the feature information of the vertex and its
local context, and finally obtain the output features 𝑆𝑠 .

3.5 POI auto-extraction module
We extract points with a local peak probability on the shape based on the density peak clustering
algorithm [26]. The traditional density peak clustering algorithm has two assumptions:

• The density of the density peak points is greater than the density of its neighbor points.
• The distance of different density peak points is relatively far.

The density peak clustering algorithm can find local peak points but lacks the mechanism to
automatically extract them.

To realize the automatic extraction of POIs, our algorithm designs an automatic POIs extraction
module based on the density peak clustering algorithm. This module takes each vertex’s probability
of being a POI as the density of the vertices, and the geodesic distance between the vertices as the
reference distance. All the vertices are mapped according to the probabilities and distance, into a
two-dimensional decision graph, where the horizontal axis of the decision graph represents the
probability 𝑝 of each point. And the vertical axis of the decision graph is the geodesic distance 𝛿
from this point to the nearest vertex whose probability is greater than its probability. 𝛿𝑖 is defined
as

𝛿𝑖 = min
𝜌 𝑗>𝜌𝑖

(𝑑 (𝑝 𝑗 , 𝑝𝑖 )), (5)

where 𝑑 (𝑝 𝑗 , 𝑝𝑖 ) is the geodesic distance between a vertex 𝑝𝑖 and the nearest vertex 𝑝 𝑗 with a
probability greater than 𝑝𝑖 . Similar to 𝜌 , we also normalize the 𝛿 value of each vertex on the same
model. It can be seen from Equations 3 and 5 that the larger the 𝜌 value and the 𝛿 value of a vertex,
the more likely the vertex is a local peak vertex. Accordingly, in the decision graph, the point closer
to the upper right corner is more likely to be a POI.
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To automatically extract POIs, as shown in Figure 6, our algorithm uses a data-driven strategy to
design a curve function during the training phase to automatically separate common vertices and
POIs on the decision graph. Since the POIs are distributed in the upper right of the decision graph
and the common vertices are distributed in the area close to the horizontal axis, we first use two
exponential functions to divide the areas where the common vertices and POIs are located in the
training data, and then calculates the offset between the two areas used for automatic extraction.
The exponential functions we used are respectively defined as{

𝛿1 = 𝑒
−𝜌 + 𝑏1,

𝛿2 = 𝑒
−𝜌 + 𝑏2,

(6)

where 𝜌 and 𝛿 are the horizontal and vertical axes of the decision graph, respectively, 𝑏1 and 𝑏2
are two offsets. As shown in Figure 6, we mark all the vertices in the training set of the Rabbit
category on the two-dimensional decision graph, move the curve 1 up, pass through the POI with
the smallest 𝛿 value, and get the offset 𝑏1. Then, we move the curve 2 down, pass through the
common point below, and get the offset 𝑏2.

Finally, the obtained separation curve for automatic POIs extraction is represented as

𝛿 = 𝑒−𝜌 + 𝑏1 + 𝑏2
𝑘

, (7)

where 𝑘 is a parameter that adjusts the up and down movement of the separation curve, and its
default value is 2. As shown in Figure 6, the points above the separation curve are automatically
extracted as the POIs in the testing process.

3.6 Algorithm
Our method can be summarized as Algorithm 1.

Algorithm 1: Context-aware POIs detection Method

Inputs:
3D models in the training set and manually annotated POI.

Outputs:
The POIs of 3D models in the test set.

Training process:
Step 1: Assign a probability to each vertex of the 3D model with manually annotated POIs

through the vertex-probability assignment module, and use it as the output of the neural
network;

Step 2: Compute the geometric features of the vertices on the 3D models through the context
feature extraction module, and aggregate the context vertices’ features as the input of the
neural network;

Step 3: Train the neural network.
Testing process:
Step 1: Compute the geometric features of the vertices on the 3D model through the context

feature extraction module to obtain the test input;
Step 2: Use the trained neural network to predict the probability of each vertex;
Step 3: Obtain the POIs on the surface of the 3D model with the POI auto-extraction module.
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x
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Fig. 7. The POI extracted within the localization error tolerance radius 𝑟 . It is considered that the POIs
extraction is correct if the geodesic distance between the automatically extracted vertex and the ground truth
is within 𝑟 .

4 EVALUATION
4.1 Datasets
We evaluate the performance of our algorithm by testing on the publicly available datasets SHREC
2007 [16], SHREC 2011 [23], and SHREC 2014 [25]. The three datasets all contain non-rigid 3D
shapes, which are widely used in various geometry processing algorithms [9, 11, 17]. The SHREC
2007 and SHREC 2011 datasets contain 20 and 30 categories of 3D shapes, respectively, with each
category having 20 shapes. The SHREC 2014 dataset contains 400 3D Human models.

4.2 Metrics
To evaluate the performance of our algorithm, we adopt the evaluation method proposed by
Dutagaci et al. [10] to measure the performance of the algorithm. This evaluation method has three
evaluation metrics, namely false negative error (FNE), false positive error (FPE), and weighted miss
error (WME). The three metrics are defined as

𝐹𝑁𝐸 = 1 − 𝑁𝑘

𝑁𝑔

,

𝐹𝑃𝐸 = 1 − 𝑁𝑘

𝑁𝑒

,

𝑊𝑀𝐸 = 1 −
∑𝑁𝑔

𝑖=1 𝑣𝑖 ·𝑚𝑖∑𝑁𝑔

𝑖=1 𝑣𝑖
,

(8)

where 𝑣𝑖 represents ground truth POIs,𝑁𝑔 represents the number of ground truth POIs,𝑁𝑒 represents
the number of POIs detected by the algorithm, 𝑁𝑘 represents the number of vertices within the
error tolerance radius 𝑟 correctly detected by the algorithm. Here, if the geodesic distance between
a detected POI and the ground truth is less than or equal to 𝑟 , then the point is deemed as a correctly
detected point. If 𝑣𝑖 is correctly extracted,𝑚𝑖 is equal to 1. Otherwise, it is equal to 0. It can be seen
from the definitions that the smaller the value of the three evaluation indicators, the better the
algorithm performs.
In the evaluation process, the localization error tolerance radius 𝑟 is an important parameter

to represent the geodesic distance range. If the geodesic distance between the point extracted by
the algorithm and the ground truth POI is within the range of 𝑟 , the point is considered correctly
extracted. As shown in Figure 7, there exists a manually annotated POI 𝑥 . Meanwhile, during the
detection process, our algorithm selects the adjacent point 𝑦, and the geodesic distance between
point 𝑥 and point 𝑦 is within the range of 𝑟 . It is considered that the POI extraction is correct.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: March 2023.



Context-aware 3D Points of Interest Detection via Spatial Attention Mechanism 111:11

Fig. 8. Extracting POIs from predicted probability distributions on 3D models. The first row demonstrates
the predicted probabilities obtained by our neural network. The second row shows the decision graph used
to automatically extract POIs. The third row presents the extracted POIs, which are consistent with the
manually marked ground truth.

Table 1. Evaluation results of our POI extraction algorithm on SHREC 2011.

Tolerance
radius 𝑟

Average
FNE

Average
FPE

Average
WME

0.00 0.8929 0.9124 0.9073
0.01 0.5572 0.7350 0.7012
0.02 0.4042 0.4572 0.3442
0.03 0.2721 0.2955 0.2521
0.04 0.1846 0.2081 0.1846
0.05 0.1260 0.1467 0.1260
0.06 0.0903 0.1150 0.0903
0.07 0.0738 0.0988 0.0738
0.08 0.0635 0.0895 0.0635
0.09 0.0550 0.0800 0.0550
0.10 0.0524 0.0772 0.0534
0.11 0.0495 0.0746 0.0525
0.12 0.0455 0.0708 0.0515

4.3 Experimental results
In our experiment, the number of training epochs is 20, the minibatch size is set to 64, and the
learning rate is 0.001. Figure 8 shows the predicted results of using the trained neural network on
some 3D shapes. It can be seen from the decision graph that our algorithm can clearly distinguish
POIs from common vertices. Figure 9 shows the representative results of each category of 3D
shapes in the SHREC 2011 dataset. It can be seen that our algorithm can correctly detect the vast
majority of POIs.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: March 2023.



111:12 Shu et al.

Fig. 9. Representative results of our POIs extraction algorithm on the SHREC 2011 dataset.

Fig. 10. The comparison of results obtained from our algorithm and existing methods on the SHREC 2011
dataset. The horizontal axis represents the tolerance radius 𝑟 , and the vertical axis represents FNE, FPE, and
WME respectively. Smaller values indicate better performance algorithms achieve.

In addition, we quantitatively measure the performance of our algorithm using the FNE, FPE,
and WME metrics. Table 1 presents the measurement results of our algorithm on the SHREC 2011
dataset. It is worth pointing out that each value in the Table represents the average result of the 30
categories of 3D shapes in the SHREC 2011 dataset. Table 1 shows that when the localization error
tolerance radius increases, FNE, FPE, and WME decrease rapidly, indicating that our algorithm
can correctly extract POIs within a certain error range. When the error tolerance range is greater
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Fig. 11. The comparison of results obtained from our algorithm and Wei’s algorithm [38] on the SHREC 2007
dataset. The horizontal axis represents the tolerance radius 𝑟 , and the vertical axis represents FNE, FPE, and
WME respectively. Smaller values indicate better performance algorithms achieve.

Fig. 12. The extracted POIs results of our algorithm with different training data for Hand models on the
SHREC 2011 dataset.

than 0.09, three metrics are stable and close to 0, which indicates that the POIs detected by our
algorithm are very close to the human-marked ones within the error tolerance range.

Figure 10 shows the comparison between the results of our algorithm and other POIs detection
algorithms, including 3D-SIFT [17], 3D-Harris [33], HKS [10], and multi-feature-based POIs de-
tection algorithm [30]. From the Figure, we can see that the FNE value of 3D-SIFT and 3D-Harris
is lower, but the FPE value is higher. It indicates that although these two algorithms can extract
most of the POIs, there still exists a lot of common vertices wrongly detected as POIs. In addition,
the FPE value of HKS is low, while the FNE value is high, which indicates that the HKS-based
algorithm can extract fewer wrong POIs, but miss more correct POIs. The detection results of our
algorithm and the multi-feature-based one are significantly better than the other three methods.
Besides, our algorithm’s values of FNE, FPE, and WME are the lowest, indicating that it obtains the
best detection performance. Figure 11 presents the comparison between the results of our approach
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Testing Results

Ground Truth

Fig. 13. The comparison of POIs extraction results from our algorithm and the ground truth for Human
models on the SHREC 2014 dataset.

Testing Results

Training Shape

Our Algorithm

Fig. 14. The impact of the vertex-probability assignment module on the POIs extraction algorithm. The first
row shows the effect of different probability distributions for an Alien model in the SHREC 2011 dataset. It
can be seen that smaller 𝜎 values will make the distribution more concentrated. The second row shows the
test results of the algorithm in this section under different 𝜎 values.

Fig. 15. Ablation experiment of our POIs extraction algorithm on the SHREC 2011 dataset. The horizontal axis
represents the tolerance radius 𝑟 , and the vertical axis represents FNE, FPE, and WME respectively. Smaller
values indicate the better performance methods achieve.
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Table 2. The average running time of our method on the SHREC 2011 dataset.

Training
phase

Feature
calculation

Network
training

Predicting
and

extracting
Time (minutes) 8 45 0.5

and a more recent POIs detection method proposed by Wei et al. [38]. From the Figure, one can see
that our method also outperforms Wei’s algorithm in terms of FNE, FPE, and WME metrics.

Since labeling POIs is a subjective problem, our algorithm adopts a data-driven way to adaptively
train the corresponding data and obtain the corresponding POIs extraction results. As shown in
Figure 12, whether the fingertips or finger gaps are individually marked as POIs or fully marked
as POIs, our algorithm can adaptively extract POIs after training the neural network with corre-
sponding training data. It shows the advantage of our learning-based approach over traditional
non-learning-based methods.
To further measure the performance of our algorithm, we perform additional experiments on

the SHREC 2014 dataset. Unlike the SHREC 2011 dataset, the SHREC 2014 dataset only contains
400 human models in different poses. We randomly take 25% of shapes (100) as the training set,
and the remaining 75% (300) shapes as the test set. The results obtained by our algorithm on the
SHREC 2014 dataset are shown in Figure 13. As we can see, our algorithm can obtain satisfactory
extraction results on the dataset.

4.4 Performance
We implement our algorithm using MATLAB and C++. And the performance of our approach is
measured on a PC with a 2.60 GHz CPU, 32 GB RAM, and an NVIDIA GeForce GTX 2080Ti GPU.
Table 2 shows the time cost of the algorithm. On average, it takes about 8 minutes to compute
features for 20 shapes, about 45 minutes to train a neural network, and about 0.5 minutes to predict
and extract POIs for one shape. It can be seen from the Table that most of the time is spent in the
training of neural networks, which accounts for about 85% of the total time.

4.5 Ablation study
We verify and test the effectiveness of the vertex-probability assignment module, the context
attention module, and the contextual feature module in our algorithm. Besides, we also investigate
the effect of various feature descriptors and different context ranges in our algorithm.
In Section 3, the vertex-probability assignment module uses Equation 3 to assign a probability

to each vertex on the model, where the 𝜎 value will directly affect the probability distribution on
the model surface, which may affect the performance of our algorithm. As shown in Figure 14, the
value of 𝜎 will affect the distribution of the probabilities on 3D shapes’ surfaces and thus affect the
algorithm’s performance. When 𝜎 is 0.1, our algorithm obtains the most satisfactory results. As 𝜎
becomes larger, there will be missing extraction and misplacement of POIs. We think the reason is
that more vertices assigned larger probabilities will result in more or misplaced local peak points.
In general, the value of 𝜎 affects the experimental results, but is very limited.

To verify the effectiveness of the context attention module in our algorithm, we use the contextual
features of vertices described in Section 3.3 as input, while removing the context attention module
described in Section 3.4. Figure 15 shows the extracted results on the SHREC 2011 dataset, where
the red curve represents the result of our algorithm, and the turquoise curve is the result of our
method without the context attention module. It can be seen from the Figure that the test results
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Fig. 16. Impact of spatial attention mechanism on our POIs extraction algorithm. The POIs extraction results
on the SHREC 2011 dataset are shown, and the missing POIs are selected with boxes. The first row presents
the results of our algorithm without the context attention module, the second row shows the POIs extraction
result of our algorithm, and the third row is the human-labeled ground truth.

obtained without the context attention module are higher than our algorithm in terms of FNE and
FPE indicators. This shows that the spatial attention mechanism does contribute a lot to improving
our algorithm’s accuracy.
As shown in Figure 16, if the spatial attention mechanism is removed from the neural network

structure, the results of our algorithm will be worse. This is because only vertices with local peak
probabilities can be regarded as candidates for POIs. If we do not consider both each vertex and its
neighboring vertices simultaneously, some POIs may be missed in the local range. For example, in
the joint parts of the Pliers model, the feet of the Ant model, the wing tips of the Bird model, and
the joint parts of the Scissors model, there exists more than one POI in these local areas. Without
the distinction between the neighborhood feature information getting from the spatial attention
mechanism, some important POIs will be missing in the extracted results.

To verify the effectiveness of the context feature extraction module in our algorithm, we remove
the context feature extraction module mentioned in Section 3 from our algorithm and re-measure
the performance. Note that the spatial attention mechanism is ineffective if no contextual feature
is presented. Therefore, we combine the features of each vertex together and represent them
as a three-dimensional tensor. The tensors are regarded as the input of the neural network and
passed through multiple convolutional layers to predict the probabilities of vertices. As shown in
Figure 15, the red curve presents the result of our algorithm, and the blue curve is the result without
considering contextual features. We can see that the FNE and FPE increase if not considering the
vertex context, which means that the accuracy of POIs extraction results becomes significantly
lower.
Figure 17 shows the effect of feature descriptors on randomly selected five categories of 3D

shapes, including Flamingo, Glasses, Gorilla, Hand, and Horse, in the SHREC 2011 dataset. We test
the performance of our method with four different combinations of feature descriptors, including
SDF + SIHKS, SDF + SIHKS + WKS, SDF + SIHKS + WKS + AGD, and SDF + SIHKS + WKS + AGD +
GC respectively. We can see that using WKS or AGD can significantly improve the performance of
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Fig. 17. Ablation experiment about the impact of feature descriptors on randomly selected five categories of
3D shapes, including Flamingo, Glasses, Gorilla, Hand, and Horse, in the SHREC 2011 dataset. The horizontal
axis represents the tolerance radius 𝑟 , and the vertical axis represents FNE, FPE, and WME respectively.
Smaller values indicate the better performance methods achieve. The red curve presents the result of our
algorithm, and the other curves represent the results of gradually reducing the feature descriptors respectively.

our method. Meanwhile, adding GC can also improve the performance of our method further. Using
SDF + SIHKS + WKS + AGD + GC achieves the best performance among various combinations
of feature descriptors. Therefore, we finally select SDF + SIHKS + WKS + AGD + GC and use the
combination for our method.

To test the effect of different context ranges on the algorithm, we conduct experiments by using
16, 25, and 36 neighboring vertices respectively, according to geodesic distances. In Figure 15, the
yellow, red, and gray curves represent the experimental results of our algorithm from using 16, 25,
and 36 neighboring vertices respectively. As we can see, using 25 neighborhood vertices achieves
the highest accuracy for our algorithm. Therefore, we experimentally selected 25 neighborhood
vertices as context ranges for the SHREC 2007, SHREC 2011, and SHREC 2014 datasets.

5 LIMITATION AND FUTUREWORK
Although the algorithm proposed in this paper is effective in various POIs extraction tasks, it does
have some limitations.
First, the algorithm in this paper relies on various hand-crafted feature descriptors, which can

only be computed on two-dimensional manifolds. Therefore, selecting and designing more effective
feature descriptors and extending the algorithm to handle non-manifold 3D models are both our
future work.
Second, similar to many other learning-based 3D model shape analysis methods, the neural

network in this paper can only be applied to 3D shapes of the same class as the training shapes.
Generalizing the algorithm to handle different classes of 3D shapes simultaneously is also our
future work.

6 CONCLUSION
This paper proposes a novel POIs extraction algorithm by introducing the spatial attention mech-
anism. The key to the algorithm lies in the context-aware feature extraction module and the
context-aware attention module. By focusing on the local context features of vertices through
the spatial attention mechanism, the accuracies of POIs extraction are greatly improved in our
algorithm. Extensive experimental results demonstrate that our algorithm is effective on different
public datasets and achieves superior performance over previous algorithms.
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