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Abstract—Face enhancement aims to improve low-quality
face images to a higher-quality level. However, in real-world
nighttime scenes, complex degradation factors often affect these
images, making it challenging to preserve important facial
details. Existing image enhancement algorithms typically fo-
cus on independently conducting image super-resolution and
brightness enhancement, assuming a fixed degradation level
based on simulated training datasets. Nonetheless, real nighttime
scenes involve complex degradation processes, where degradation
factors dynamically and variably manifest. Therefore, achieving
effective face enhancement in such scenarios is particularly
daunting. This work analyzes and unveils the multiple factors
of low resolution and low illumination during degradation.
Based on this analysis, we propose a Bi-factor Degradation
Decoupling network. Our method leverages a decoupling network
to generate qualitative and quantitative features corresponding to
each factor’s degradation degree in the low-quality environment.
These features are then combined with robust facial feature
constraints to recover the details of low-quality faces. Extensive
experiments demonstrate that our method surpasses state-of-the-
art approaches in both enhancement and face super-resolution.

Index Terms—Degradation Analysis, Super-resolution, Low-
illumination Enhancement, Deep Learning, VAE.

I. INTRODUCTION

A. Problems

MAGE capturing systems often encounter challenges in
I variable shooting distances and difficult lighting conditions,
resulting in various quality issues such as low resolution
(LR) and inadequate illumination. To address these challenges,
face enhancement algorithms aim to reconstruct high-quality
face images from low-quality inputs. The term ‘low-quality’
encompasses images with LR, poor illumination, or multiple
degradation factors.
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Fig. 1. Illustration of a low-quality image captured in a real nighttime scene
and the face’s recovery results. (a) The image of the nighttime scene. It suffers
from the low resolution and low brightness. In particular, the low-quality faces
have different degrees of resolution and brightness. To illustrate the issue,
the relative data are counted. (b) The statistically different resolutions of the
real faces selected from the low-quality images. (c) The statistically different
intensities of the real dark faces selected from the low-quality images. The
comparison methods suffer from the difficult degradation in the real night
scene. (d) The input low illumination and LR face by linear amplification and
interpolation cropped from the low-quality image (a), (el) the LLE face by
HDR-net [1], (e2) the cascaded LLE and SR face by HDR-net+Super-FAN [2],
(e3) the SR face by Super-FAN, (e4) our results.

The technique of face SR was pioneered by Baker and
Kanade [3], which proposed an approach that formulates high-
resolution (HR) face reconstruction as a prior factor. The
method uses spatial distributions, such as Gaussian pyramids,
to predict training patches for frontal face images.

Recently, deep learning-based methods have shown great
success in image SR [4], [5], including algorithms such as
SRCNN, VDSR, and LapSRNet [6], [7], [8]. However, apply-
ing SR techniques to low-illumination face images may not be
suitable due to the potential introduction of unwanted noise
and artifacts. Low-quality images with complex degradation
factors, especially in dark conditions, can pose challenges for
SR algorithms.

In real surveillance scenarios, face images are often captured
in low-light conditions, resulting in complex degradation phe-
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nomena caused by multiple factors and random degradation.
Existing algorithms typically focus on individual aspects, such
as face SR or brightness enhancement [9], [10]. However,
they usually ignore the combined effects of these degradation
factors in real scenes, leading to artifacts, blurred details,
and other deficiencies in the results. For example, Fig. 1(a)
illustrates a blurred low-light face captured in a night scene,
exhibiting uneven illumination, poor face details, and high
image noise due to linear zooming. Moreover, real low-
quality face images often exhibit variations in resolution and
brightness, as shown in Figs. 1(b) and (c), which illustrate
examples in DarkFace [11]. This dataset demonstrates a wide
range of resolution and illumination levels in low-quality faces.
We enhance the input low-quality images using the HDR-net
algorithm [1], which improves details and reduces noise, as
depicted in Fig. 1(el). However, when low-light and LR im-
ages are employed as inputs for face enhancement algorithms,
such as Super-FAN [2], significant artifacts, blurred details,
and color biases are introduced, resulting in poor subjective
outcomes, as shown in Fig. 1(e3). The combined effects
of low illumination and low resolution further degrade the
reconstruction quality, leading to off-color and unclear details,
as indicated in Fig. 1(e2). To address these challenges and
improve facial details, we propose an approach that analyzes
the combined effects of low illumination and low resolution
in order to enhance low-quality faces.

The process of enhancing low-quality faces captured in
nighttime scenes can be conceptualized as an information
tracing procedure. Its objective is to recover missing valid
pixels from the degraded inputs and reconstruct them into
high-quality images. However, existing face enhancement al-
gorithms primarily focus on recovering clear face images and
do not explicitly address retrieving missing pixels or recon-
structing valid face information from the degradation process.
Consequently, the performance of these algorithms heavily re-
lies on the ability to accurately analyze the degradation process
and trace back to the potential state prior to information loss.
Treating face enhancement solely as a down-sampling process
without precise knowledge of the specific degradation state
of the image is insufficient for effectively recovering actual
low-quality face images. Instead, by incorporating degradation
analysis as a constraint, we can reconstruct face details that
align with the likely state preceding information loss. This
approach goes beyond the prediction of unknown information
by existing algorithms, thereby enhancing the overall perfor-
mance of face enhancement in terms of reconstruction quality.

B. Main Idea and Contributions

To tackle the aforementioned challenges, we devise a robust
face enhancement algorithm grounded in degradation decou-
pling analysis.

Main Idea: Specifically, we propose an algorithm de-
signed to reconstruct low-quality face images in nighttime
environments with various resolutions and illumination levels.
First, the network can retrospectively identify and evaluate
the factors contributing to image degradation in the given
environment, and quantify the corresponding degree of degra-
dation. These identified factors and degradation levels are
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subsequently incorporated into the face reconstruction process.
Additionally, the algorithm extracts resilient facial features
that effectively counter environmental interference, thereby
constraining the face reconstruction procedure.

To this end, we adopt the 8-vae decoupling network [12] to
separate the low-quality face images into interpretable latent
factors [13]. Next, we design encoders to simultaneously
address the challenges of illumination and resolution degra-
dation. Additionally, we employ an encoder to estimate robust
facial feature factors. As a result, the resolved degradation
factors are generated and assigned with corresponding labels
and intensities. These factors are then utilized by a decoder
to generate enhanced SR images under low-light conditions
and images that highlight the extracted facial features. Finally,
these generations are fed into the reconstruction network for
accurate facial results.

In this paper, our contributions are summarized as follows:

« We propose a novel approach that simultaneously tackles
the enhancement of face images captured in LR and
low-light conditions within real-world scenarios. Our
technique effectively addresses the challenges commonly
encountered when dealing with a wide range of random
scales of resolutions and illumination levels.

« In this study, we present a comprehensive analysis that de-
couples the bi-factor degradation observed during the face
enhancement process. This analysis provides valuable
insights and effective methodologies that can be applied
to real-world scenarios, enabling practical applications.

« We conduct a comprehensive evaluation on publicly avail-
able and real-world low-quality face datasets, demonstrat-
ing the superior performance of our proposed method
compared to several state-of-the-art methods.

The remainder of the paper is structured as follows. Sec. II
provides an overview of related works. Our proposed method
is described in Sec. III. Experimental results on simulated
and real-world low-quality images are presented in Sec. IV.
Finally, we conclude our work in Sec. V.

II. RELATED WORK

In this section, we provide a comprehensive review of
the relevant literature pertaining to our proposed method.
The literature review covers various aspects, including image
degradation analysis, face SR, and brightness enhancement.

A. Image Degradation Analysis

Image degradation analysis plays a crucial role in image
enhancement tasks such as image SR, restoration, and deblur-
ring. Many research works have incorporated this analysis into
their methodologies. For example, Efrat et al. [14] emphasized
the significance of accurately estimating the blur kernel for
effective image deblurring. Tracking the degradation process
has become a key objective for various image processing
algorithms. To address the challenge of handling diverse blur
kernels encountered in real LR images, Zhang et al. [15]
proposed a plug-and-play framework specifically designed for
degraded SR. Their approach focused on effectively addressing
arbitrary blur kernels and relies on additional kernel estimation
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methods to accurately estimate the blur kernels in real low-
quality images.

In order to enhance the algorithm’s adaptability to real-
world processes, some researchers have explored training aug-
mented networks by estimating various factors, such as blur
kernels [16], [17] and noise [18], present in real low-quality
images. This approach involves generating training datasets
of real low-quality images or constructing datasets with both
high and low-quality images. Bulat er al. [19] introduced
the High-to-Low+Low-to-High model, which analyzes the
degradation process of a low-quality image so as to reconstruct
it accordingly. The Kernel GAN model [20] treats SR in real
images as an estimation of unknown downsampling kernels for
reconstruction, thus aligning with the motivation behind High-
to-Low+Low-to-High to make training data closely resemble
the given inputs. The DASR model in [21] employs a degra-
dation encoder to estimate features related to the degradation
level, which are then used as constraints in the reconstruction
process through the degradation-aware block.

In contrast, real-world low-quality images exhibit a wide
range of degradation factors, making the actual degradation
process complex and intractable. Additionally, approaches like
that proposed in [19] rely on generating low-quality datasets
for enhanced models but do not address the fundamental issue
of the dependency on the training data. Without effective
constraints on quality reduction, the resulting representation
models may still struggle to adequately reconstruct low-quality
images in real scenes with varying and dynamic conditions.

B. Face Super-resolution

Face SR has witnessed remarkable advancements thanks to
the powerful deep learning techniques [9], [22], [23], [24],
[25], [26], [27]. However, preserving manifold consistency
between the LR and HR spaces in real-world scenarios remains
challenging due to the complexity of degradation processes.
To capture both the global topology information and local
texture details of human faces, Huang er al. introduced
Wavelet-SRNet [28], a method based on wavelet transform.
This approach incorporates three types of loss functions:
wavelet prediction loss, texture loss, and full-image loss.
Similarly, Bulat et al. introduced Super-FAN [2], an end-
to-end framework addressing face SR and facial landmark
detection simultaneously, achieving improved face resolution
and robust facial landmark detection. Ma et al. [24] proposed
a face SR approach that employs two recurrent networks in an
iterative collaboration framework. These networks focuse on
facial image recovery and landmark estimation, respectively,
enhancing face SR performance. In a related study, Mei et
al. [29] proposed a Non-Local Sparse Attention (NLSA)
method for single image SR. This method utilizes dynamic
sparse attention patterns to effectively address the challenges
associated with SR tasks.

In order to address the challenge of achieving large-scale
face SR, Wang et al. [30] proposed a method that incorporates
the learning of facial prior knowledge during the training
process to enhance the level of detail. However, this approach
introduced a significant issue whereby the training model
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becomes excessively dependent on the simulated datasets,
leading to unsatisfactory results when generating very LR
faces in real-world scenarios. To break such limitations and
improve the quality of faces at different scales in practical
settings, the multi-scale recurrent scalable network (MRS-
Net+) was proposed by Liu et al. [31]. This method aims to
effectively enhance the quality of faces at varying resolutions,
providing more accurate and visually appealing results. By
considering the multi-scale nature of face SR, MRS-Net+
offers a promising solution for addressing the challenges
associated with face SR across different scales in real-world
applications.

However, the aforementioned studies consider face en-
hancement as the SR of simulated data sampled at a fixed
scale, which substantially differs from real-world degradation
scenarios. As revealed in [32], models trained using these
approaches have demonstrated unsatisfactory reconstruction
results when applied to real-world images. Thus, the facial
reconstruction task lacks an effective constraint on the en-
vironmental conditions, leading to suboptimal reconstruction
performance.

C. Brightness Enhancement

Brightness enhancement approaches [33], [34], [35] aim
to enhance the illumination and visibility of dark images.
These approaches can be categorized into two main types:
Retinex decomposition-based and deep learning-based meth-
ods. Retinex-based methods such as single-scale Retinex [36]
and multi-scale Retinex [37] utilize Gaussian or bilateral filters
to remove halo artifacts and improve image quality. Other
methods manipulate both the illumination and reflectance
layers to achieve enhanced results.

Deep learning methods for enhancing low-light images
have been extensively studied. Lore et al. [38] utilized a
deep auto-encoder called Low-Light Net (LLNet) for contrast
enhancement and denoising. Gharbi et al. introduced HDR-
net [1], a neural network architecture inspired by bilateral
grid processing and local affine color transforms. Wang et
al. proposed Retinex-Net [39], which includes Decom-Net
and Enhance-Net for image decomposition and illumination
adjustment, respectively. Chen et al. introduced the SID
model [23], enhancing low-light images using corresponding
long-exposure reference images.

In a recent study by Yang et al. [40], an attempt was
made to explore semi-supervised learning techniques for low-
light image enhancement. The work proposed a deep recursive
band (DRBN) representation that serves as a connection be-
tween fully supervised and unsupervised learning frameworks,
thereby leveraging the advantages of both approaches. To
enhance images and suppress noise in the reflectance map,
a Low-Rank Regularized Retinex Model (LR3M) was pro-
posed in [41], incorporating a low-rank prior into the Retinex
decomposition process. Another representative model, called
Retinex-inspired Unrolling with Architecture Search (RUAS)
was proposed in [42], aiming to construct a lightweight yet
effective enhancement network for low-light images in real-
world scenarios. By exploring the principles of Retinex, RUAS
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achieves superior performance in enhancing low-light images
while considering the computational efficiency of the network
architecture.

Zhao et al. [43] proposed a unified deep framework for
Retinex decomposition and low-light image enhancement.
However, existing methods often struggle with adjusting ex-
posure effectively, resulting in uneven exposure or partial
overexposure. To overcome these limitations, Fan et al. [44]
introduced the multiscale low-light image enhancement net-
work with illumination constraint (MLLEN-IC). This end-to-
end model incorporates an illumination constraint into the
network architecture, aiming to achieve superior generalization
ability and stable performance. By leveraging this constraint,
MLLEN-IC effectively addresses exposure-related issues and
produces desirable enhancement results.

However, real-world nighttime images are often affected by
various complex degradation factors, including noise, resolu-
tion degradation, and interference from low light conditions.
Additionally, the image brightness can vary significantly with
different low light intensities, posing challenges for recovering
low-quality face images in various degradation conditions [19].
Consequently, achieving satisfactory results in restoring real-
world low-quality face images under such multi-dimensional
degradation conditions remains a significant challenge.

In real-world scenarios, low-quality faces frequently exhibit
various complex and diverse degradation processes. Con-
sequently, a considerable gap exists in the formation and
effective treatment of the degradation processes associated
with low-quality faces in real scenes. Further research and
development are needed to address this challenge and improve
the performance of face enhancement and SR algorithms in
handling complex degradation scenarios.

III. PROPOSED METHOD
A. Motivation

In this section, we provide a comprehensive explanation of
the motivation behind our proposed method.

Fig. 1(a) illustrates the common challenges faced when
capturing low-quality faces at night, including issues related to
illumination and shooting distance. These factors often result
in missing object information and inaccurate recognition.
Furthermore, the wide range of illumination conditions and
various shooting distances introduce additional complexity,
leading to diverse and random degradation in face images.
Our objective is to address these challenges and restore the
quality of faces in real-world scenarios.

In Fig. 2(sl), the object is captured under natural lighting
conditions /;. By maintaining an appropriate capture distance
D, the face image y retains as much high resolution and
detailed information of the original object as possible. In
contrast, Fig. 2(s2) illustrates the impact of low illumination
I, which diminishes the reflected light from the object.
This reduction in information intensity leads to lower overall
illumination in the final imaging result x,,, thus resulting in
image degradation. This degradation affects all pixels in the
image, where the illumination degradation can be expressed as
Xy = I1y. Fig. 2(s3) demonstrates the formation of degradation
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Fig. 2. Conceptual diagram of image degradation process from a high-
quality image to a low-quality image, involving two distinct and independent
components: low illumination and long-distance factors. (s1) The capturing
system with the natural illumination /7 and short-distance Dj. (s2) The
capturing system with the low illumination 7, and short-distance Dj. (s3)
The capturing system with the natural illumination /; and long-distance D».

as the object is captured with a smaller resolution x;; due to
an increased capture distance from D; to D,. This resolution
degradation process [45] can be viewed as a downscaling
model applied to the HR image y. It involves reducing the
image resolution x;; = R;y by combining multiple pixels in the
neighborhood through mean or weight fusion techniques. The
downsampling operation converts the HR image y to a lower-
resolution image x;; using R;. While illumination degradation
refers to an overall reduction in image pixel values, resolution
degradation involves the fusion of neighboring pixels. Consid-
ering the degradation process and the patterns affecting image
information, the degradation of illumination and resolution are
essentially independent of each other. As a result, the low-
quality image x can be expressed by

x = Ri(Iry). ey

The bi-factor degradation decoupling significantly impacts
the rendering of face images and the representation of crucial
information. As shown in Figs. 1(b) and (c), the combination
of a long distance (resulting in a lower resolution of the target
face) and low exposure (leading to a dark image) contributes
to a more intricate degradation of the image.

Since the degradation mechanisms of illumination and res-
olution are independent, we can represent the degraded image
x in terms of low illumination and low resolution as follows:

= [ [ [ ol Graznpopt)

p(zr)dz, dzidzy,

)
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where z;, z,-, and zy represent the degradation factors of illu-
mination, resolution, and facial features, respectively. We aim
to separate and quantify these two independent degradation
factors by generating labels for the related facial features in
the image.

As illustrated in Fig. 3, we aim to recover a high-quality
face y from an input degraded face x obtained from a
nighttime environment. The low-quality image x undergoes
random intensity degradation, including low illumination and
low resolution. To address this issue, we propose a model that
decouples input x and extracts multiple latent codes repre-
senting the latent feature spaces [46], involving illumination,
resolution, and facial feature factors. By utilizing the latent
code of the facial feature factor and independently analyzing
the latent codes of the illumination and resolution factors,
we generate the corresponding factor intensity labels. These
labels are used to constrain the low-light enhancement and SR
techniques. Finally, the low-light enhancement, image SR, and
robust facial features are fused to the reconstruction network
to generate the hallucinated results.

B. Extraction of Latent Codes

In this subsection, we focus on analyzing low-quality im-
ages from three aspects: illumination, resolution, and robust
facial features. To accomplish this, we employ three encoders
to implement the corresponding functions. The encoders gen-
erate latent codes that represent illumination and resolution,
respectively. These latent codes enable us to track the degra-
dation process and provide a detailed analysis of the complex
factors in an actual environment. Thus, we use E, to describe
illumination and E; to describe resolution as

zr = Ep(x),zi = Ei(x), 3)

where the latent codes z, and z; capture the degradation char-
acteristics of the environmental factors and provide insights
into the effects of respective degraded factors.

As our focus is on reconstructing face images, it is important
to extract the representation of facial features that can adapt
to various environmental conditions. By emphasizing robust
facial features during the recovery process, we ensure clear
and accurate depictions of faces regardless of complex envi-
ronmental conditions. To this end, we employ the face feature
encoder E to generate the latent code specifically related to
facial characteristics

if =Ef (x), 4)

thus obtaining the facial characteristics zy.

C. Factor Analysis

We extract the latent codes representing distinct factors: illu-
mination, resolution, and facial characteristics. By considering
these factors using the extracted codes, we can recover the
desired information.

Facial feature extraction. Our primary objective is to
reconstruct facial information in low-quality images. Facial
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features play a crucial role in these low-quality images as they
contain significant semantic information that can be utilized
for face reconstruction. Using the existing face semantic latent
code zy, we employ the facial decoder x,, to generate the
facial feature map D :

(&)

The feature map x,, primarily acts as a skin mask, accurately
capturing the contour and position of the face. To impose
additional constraints on the facial details, x,, is used as the
input for two CNN modules F,,, which in turn generate mask
features x,,s that contain more fine-grained facial details:

Xm =Dy (z5).

(6)

As a result, the facial features can be thoroughly analyzed
and accurately represented in fine detail.

lumination analysis and enhancement. In a degraded en-
vironment, illumination analysis is primarily conducted using
the latent code z; extracted by the illumination encoder E;.
The generated z; is then used as the input to the illumination
decoder, which generates the input image x; = x to impose
constraints on the illumination factor.

Xms = Fin(Xm).

px) = / P | 20)p(z)dz. )

The illumination decoder is used for constraining the illu-
mination factor D;:

x; = D;(z;). ¥

Meanwhile, the latent code z; is utilized in the fully
connected layers Fc; for labeling. However, representing illu-
mination poses challenges due to the various sensitivities of
different objects in each scene of the actual image, making
convergence difficult. To address this, we focus on accurately
expressing illumination by specifically targeting facial skin
with a similar light sensitivity range. To this end, we utilize
the Face Extraction Unit (FEU) to represent the image as face
illumination without the background:

Xf =X Xy +max(x - X)) (1 = Xp).

©))

The face information x; is fed into another illumination
encoder E¢; to generate the latent code for face illumination,
denoted as

zri = Egi(xy). (10)

The latent code is subsequently processed by the fully
connected network Fc; to generate the illumination label /;
(aka the illumination factor) expressed as I; = Fc;(z¢i).

To achieve low-light enhancement, we determine the opti-
mal value for the illumination factor, which serves as a bound-
ary condition to precisely express the resulting illumination
enhancement. The illumination parameters and face factors are
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Fig. 3. Decoupling analysis framework of Bi-factor Degradation and robust facial features for face enhancement. Given a low-quality image x, our approach
involves three modules: LLE, SR, and facial features. The input image x goes through illumination analysis and is then encoded by E; to extract the latent
code z;, which is then refined by D;. We introduce the FEU module for face illumination analysis that focuses on the face skin, which is encoded by E;
to obtain the illumination latent code zf;. An illumination label /; is generated using the fully connected layer F'c;. Secondly, in resolution analysis, x
is encoded by E, to obtain the latent code z,, which is then refined by D,. The fully connected layer Fc, uses z, to generate the resolution label /.
Consequently, we use the VAE module with Ey and Dy for face feature analysis to derive the face feature map x;, and the latent code z5. The network
Fyn extracts mask features x5 from x;,,. Using the latent codes zr, zi, zr, and the decoders D, Dy, we generate respective residual features for low-light
enhancement (x.) and SR (xs,). The intermediate outputs Xo, Xsr, Xms, and x,, are then fed into the U-Net for reconstructing the residual result, which
contains more face details. Finally, the intermediate enhanced image x. is added to obtain the final output x,.

thoroughly constrained, ensuring a well-balanced and highly
effective enhancement. The enhancement result is denoted as
Xe!

plx.) = / / e | Gz DpGp(ep)dadzey, (1)

where the illumination factor is treated as an environmental
condition, while the face factor represents a robust object
representation independent of illumination for the enhanced
images X,.

To reconstruct the corresponding image, both the facial and
illumination features are utilized as inputs to the illumination-
enhanced decoder D,:

12)

Through this network, we are able to perform degradation
analysis and feature enhancement of the illumination factor.

Resolution analysis and enhancement. We also analyze to
decompose the factors responsible for the random degradation
in image resolution. The latent code z, is derived from the
resolution encoder E, and utilized to reconstruct as the input
image x, = x:

Xe = X; +De(Zi,Zf)-

px,) = / (s | 2)p(zr)dz (13)

The constrained resolution factor is represented by the
resolution decoder D, :

Xr =Dr(zr)- (14)
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The latent code z, is passed through the fully connected
network Fc, to generate the corresponding label denoted as
the resolution factor Ib, = Fc,(z,).

When addressing the resolution degradation, the scale pa-
rameters are utilized as inputs for the resolution enhancement
process, specifically in image SR. The resolution and facial
factors are employed as boundary conditions to express the
resulting SR image x,:

p(xsr)://p(xsr | (zr,2f))p(2z5)p(2f)dzsdzy, (15)

where the resolution factor serves as the environmental condi-
tion, while the face factor is utilized as the semantic feature.
These features are mutually independent, These features are
mutually independent, allowing for effective constraints to be
applied in the reconstruction of the SR image x;,. The face
and resolution features are fed into the image SR encoder D,
to reconstruct the corresponding images:

xsr:xr+Dsr(Zr7Zf)- (16)

As a result, this network allows us to utilize the cor-
responding factors of both resolution and face features for
enhancement.

D. Image Reconstruction

By performing decoupling analysis, we decompose the input
image x into multiple factor features: xg, Xe, X5, and x,,.
These features effectively offer a comprehensive representation
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of the degraded conditions and facial characteristics. Hence,
they are reconstructed via F,, to generate improved HR images
X, by incorporating more detailed residuals from the interme-
diate enhanced image x,:

a7

Xo =Xe+ Fy (xsrsxea xm.\‘,xm),
where the reconstructed network is grouped by a U-Net [47].

E. Loss Functions

The loss functions are defined in two aspects: feature
decoupling and image reconstruction.

1) Feature Decoupling: Feature decoupling primarily rep-
resents essential attributes, while image enhancement is ac-
complished through degradation analysis and robust feature
extraction. This process encompasses the analysis of multiple
factors, including facial features, illumination degradation, and
resolution degradation.

Face feature analysis involves the representation of robust
facial features in the image, which is achieved through the use
of the face mask maps, and the loss function is

2 2
Lf = || Xms = Xmse| |2 + X = X | |2’ (18)

where x,,,5; and x,,; refer to the face mask maps corresponding
to the target faces.

The illumination degradation analysis process involves il-
lumination feature representation, illumination enhancement,
and label generation. The loss function £; for this process
comprises these three components, with feature representation
and illumination enhancement primarily expressed through the
Euclidean distance. The generated labels are represented using
the cross-entropy loss function as follows:

Li = |lxi = x| 15+ ||xe = xie| |3 + o1 (label;  log;

19)
+ (1 - labeli) IOg(l - li)),

where label; represents the target illumination label, o de-
notes the illumination constraint component, and x;; refers to
the LR face.

The resolution degradation analysis process involves res-
olution feature representation, resolution enhancement, and
resolution label generation. The loss function £, for this
process also consists of these three components:

2 2
Ly =|lx, — x| |2 + | xsr = X |2 +0—2(labelr *logl,

(20)
+ (1 -label,)log(1 -1,)),

where label, represents the target resolution label, o» denotes
the constraint component in terms of resolution and x,; refers
to the HR low-illumination image.

2) Image Reconstruction: The image reconstruction pro-
cess primarily involves fusing three deconstructed feature
components: facial features, brightness factors, and resolution
factors. The resulting output is the enhanced face image x,,
and the loss function for image reconstruction is denoted as

Lo:
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L, = lxo =yl 3. 21)

After analyzing the environmental characteristics and facial
features, a clear face image can be reconstructed.

3) Overall Loss Function: Consequently, the overall loss
function £;, encompasses both feature decoupling and face
reconstruction:

Lio = -Lf +Li+ L +al,, (22)

where the constraint weight a determines the importance of
face reconstruction, ultimately improving feature extraction
and face reconstruction.

F. Implementation Details

Training setup: The network architecture is depicted in
Fig. 3. The model is trained using the ADAM optimizer [48]
with constraint parameters set to @ = 1, o7 = 0.2, 0 = 0.2.
The learning rate is set to 0.0001, and it is halved every
100 training epochs. The experiments are implemented using
PyTorch [49] and trained on an NVIDIA RTX 1080ti GPU.

IV. EXPERIMENTS

We conduct extensive experiments to assess the effective-
ness of our algorithm on low-quality face images captured in
nighttime scenes. The term “low-quality” here encompasses
both low resolution and low brightness in a random fashion.
It is worth noting that enhancing low-quality face images at
night presents a unique challenge, as existing algorithms have
not directly addressed this specific scenario. To address this,
we treat the compared algorithms for face enhancement as a
combination of low-illumination enhancement and face SR. In
terms of face SR, we compare our approach against state-of-
the-art (SOTA) algorithms such as Super-FAN [2], Wavelet-
SRNet [28], and NLSA [29]. For reference, we also in-
clude Bicubic interpolation as a baseline comparison method.
Prior to the face SR process, we perform pre-processing for
low-illumination enhancement. This includes linear enhance-
ment, LR3M [41], HDR-net [1], SID [23], Retinex-Net [39],
RUAS [42], and DRBN [40]. All experimental validations
are conducted on the CelebA face dataset [50], in which
the luminance degradation is simulated using a realistic low-
illumination model [51], [52], whereas the resolution degra-
dation is implemented as a random degradation parameter.

A. Realistic Low-illumination Model

Following the Camera Response Function (CRF) approach
proposed in [51], [52], we synthesize low-light images by
randomly setting illumination conditions and introducing noise
to the original face images.

We set the realistic low-illumination model as

y=f(/T(DM(L +n(L)))),

where f refers to CRF sampled from the set of 201 CRFs
mentioned in [53], DM stands for the demosaicing function,
I' represents the degree of the low-illumination, L is the

(23)
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irradiance image of raw pixels, and n(L) denotes the adding
random noise.

During the experiments, we employ the low-illumination
model on the simulated face images, where the image noise
variance o, for n(L) ranges from 0 to 0.06, and I is a random
value selected from the range of 1 to 80, with 10 consecutive
numbers assigned as a level (e.g., values from 1 to 10 represent
one level).

B. Datasets

CelebA: We conduct extensive experiments on the Large-
scale CelebFaces Attributes (CelebA) dataset [50]. For our
experiments, we utilize 12,000 images for training and approx-
imately 3,500 images for testing. The process for generating
these dark images is described in Sec. IV-A. We apply the
model trained by CelebAMask-HQ [54] on the original (well-
lit) images to obtain the targeted parsing maps. They are all
resized to 256 X 256, and then randomly downscaled to one of
the sizes 32 x 32 and 64 X 64. Finally, they are super-resolved
to 256 x 256.

Helen: We also conduct our experiments on the Helen
dataset [55]. The methods for synthesizing dark images are
described in Sec. IV-A. For testing purposes, we utilize
approximately 300 images, which are all resized to 256 x 256,
and then randomly downscaled to one of the sizes 32 x32 and
64 x 64. Finally, they are super-resolved to 256 x 256.

D-faces+: We obtain face images from the publicly available
real-world nighttime face dataset DarkFace [11]. These real-
istic low-quality face images are captured in low-light condi-
tions. We collect approximately 150 face images as a realistic
low-quality face testing set, which involves various factors
such as random LR and realistic nighttime low-illumination
conditions. The primary objective of this data collection is
to validate the effectiveness of our model and compare its
performance with other algorithms using subjective metrics
on real-world images.

Face Detection: In the training process, incorporating facial
features can enhance the performance of the enhancement
model. In our experiment, we extract face masks from CelebA
and Helen using a pre-trained model for parsing maps [56]
as facial features. The resulting face masks exhibit similar
characteristics to those obtained from CelebAMask-HQ.

C. Performance Evaluation

In this section, we compare the performances of our method
and several state-of-the-art (SOTA) methods. As our work
primarily focuses on restoring low-light and LR face images,
we evaluate the performances on the simulated datasets derived
from Helen [55] and CelebA [50] mentioned above. The
evaluation involves three scenarios: restoration from low-light
images with 4x down-sampling (resolution: 64x64), 8x down-
sampling (resolution: 32 x 32), and randomly down-scaled to
a resolution ranging from 32 x 32 to 64 X 64. In the training
stage, our model and the compared models are all trained using
randomly down-scaled images of the simulated CelebA. In the
inference stage, the above three kinds of down-scaled images
from both CelebA and Helen are used.

Low-light LR images. For a fair comparison, all LR test
images from CelebA and Helen are upscaled to the size of
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256 x 256 by using the various LLE and face SR models
trained on the simulated Celeb. In our approach, we utilize
the SID algorithm to recover the original image. The model
initially starts with four channels, but in our validation, it
was adjusted to three channels. The resulting images are then
pre-processed with low-light enhancement methods before
being upscaled using SR algorithms. Additionally, we train a
separate model using only SR methods to enhance low-quality
images. Fig. 4 compares the enhancement results for low-
light images downscaled by a factor of 4, showing that while
images with larger-sized faces are adequately represented,
our results particularly exhibit finer details. The results show
that although Wavelet-SRNet can reconstruct fine details, it
leads to unnatural colors and artifacts, significantly degrading
subjective performance. The third and fourth rows of Fig. 4
depict the results for enhancing low-quality faces of different
sizes, showing the compared algorithms yield poor reconstruc-
tions for low-quality face images with 8x down-sampling.
In contrast, our model excels in preserving fine face details
under the same image conditions. The sizes of faces in the
subsequent four rows are smaller, posing a greater challenge
for the compared algorithms to recover image textures at
8% down-sampling. Overall, our algorithm produces relatively
clear predictions of facial details in these scenarios.

To further validate the performance of our training model,
we perform face SR and enhancement on randomly down-
sampled images. Similar to the aforementioned results, the LR
images are also upscaled to 256 x 256. The last four lines of
Fig. 4 illustrate the different sizes of the reconstructed faces.
The comparison algorithm exhibits minimal improvement in
performance, with the faces not being adequately recovered.
In contrast, our approach leverages degradation analysis and
robust face features, resulting in our results exhibiting precise
details that facilitate identification. This highlights the superi-
ority of our approach. Fig. 4 also shows the results with our
model for randomly down-sampled low-light images.

Table I compares the results of various algorithms along
with their corresponding experimental setups. Considering
the specific nature of our experimental setup, the compared
algorithms utilize cascades of pre-trained models for LLE
and face SR. The experimental setups involve the down-
sampling factor (i.e., 4X, 8%, or random downsampling) with
random low-lighting. As demonstrated in Table I, the results
obtained from LLE can be viewed as a pre-processing step
for image SR. With Wavelet-SRNet, most performance metrics
improve compared to the LLE pre-processing methods. Addi-
tionally, we conducted tests on the reconstruction performance
of Wavelet-SRNet without luminance pre-processing, which
yields significantly improved objective metrics compared to
the pre-processing approach. This alternative setup can also
be applied to super-FAN. It is worth noting that the NLSA
approach, the most recent work, outperforms Wavelet-SRNet
and is very close to our method in terms of PSNR and SSIM.
Furthermore, we conducted performance verification specif-
ically on the enhancements achieved solely by super-FAN,
Wavelet-SRNet, and NLSA. Low-light conditions and the lack
of fine details negatively impact the objective results of these
individual approaches. Interestingly, the results obtained from
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Fig. 4. Qualitative performance comparison of high-resolution faces recovered from simulated low-light and down-scaled faces sampled from the CelebA and
Helen datasets. All these images are upscaled to the size of 256 x 256. In addition to this, linear amplification images are also upscaled to the same size, while
keeping the rest of the results consistent with this setting. The input faces are of various resolutions. The first four rows correspond to images downscaled by
a factor of 4, while the next two rows show images downscaled by a factor of 8.

super-FAN and Wavelet-SRNet are even worse than those
achieved through LLE pre-processing methods. In contrast, our
method outperforms all the compared algorithms, including the
combined methods.

Influences on input sizes and low-light conditions. In this
subsection, we present the influences of different degradation
factors involving input sizes and low-light conditions. Fig. 5
visualizes the reconstructed results of our method and HDR-
net and Super-FAN on two test face images (Face; and
Face;) with sizes of 56 X 56 and 40 x 40, respectively. The
first two rows, the middle two rows, and the last two rows
correspond to the experimental results for low-light images
with different parameter settings, namely I' = 20, 40, and
80, respectively. The results with HDR-net and Super-FAN
are influenced by various degrees of degradation, resulting in
different levels of detail in the reconstructed faces. In contrast,
our method leads to stably good details across different
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cases. This indicates that for complex degradation factors,
our method can perform well on a wide range of low-quality
images. Furthermore, Table IV compares the objective metrics
for different degradation factors, including resolution (56 x 56,
48 x 48, and 40 x 40) and luminance level (I = 20, 40, and
80), showing that our algorithm consistently outperforms the
compared algorithms in terms of the objective metrics.

Influences on face recognition performance. We further
evaluate the face recognition performances on the recon-
structed faces with various methods measured by the cosine
similarity based on ArcFace embedding [57]. Our evaluation
includes generations of random degraded images obtained
from CelebA and Helen. We compare our method with
several SOTA methods, including Super-FAN [2], Wavelet-
SRNet [28], NLSA [29], HDR-net [1], SID [23], Retinex-
Net [39], RUAS [42], and DRBN [40]. Table V demonstrates
that our method achieves the highest face recognition accuracy
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Fig. 5. Qualitative performance comparison of recovered faces in different sizes due to various degradation situations.

TABLE I
QUANTITATIVE PERFORMANCE (PSNR AND SSIM) COMPARISON OF OUR METHOD AND THE COMPARED METHODS ON SIMULATED IMAGES DERIVED
FROM CELEBA AND HELEN UNDER VARIOUS DEGRADATION SCENARIOS

CelebA Helen

Algorithms 4x 8 random degrees 4x 8x random degrees
Metrics PSNR(db)/SSIM | PSNR/SSIM PSNR/SSIM PSNR/SSIM | PSNR/SSIM PSNR/SSIM
Linear amplication 18.53/0.6340 17.78/0.5584 18.13/0.5929 19.06/0.5300 | 17.95/0.4500 18.47/0.4867
LR3M [41] 8.86/0.3449 8.73/0.3168 8.89/0.3396 10.90/0.2989 | 10.70/0.2705 10.93/0.2955
Retinex-Net [39] +Bicubic 20.08/0.6262 18.74/0.5353 19.36/0.5772 19.51/0.5398 | 17.65/0.4389 18.47/0.4837
SID [23] 23.03/0.7126 20.80/0.6011 21.78/0.6501 20.54/0.5706 | 18.49/0.4577 19.37/0.5072
HDR-net [1] 22.81/0.6992 20.93/0.5995 21.78/0.6441 22.49/0.6419 | 20.20/0.5374 21.25/0.5845
RUAS [42] 19.22/0.5918 18.16/0.5242 18.61/0.5282 18.38/0.4794 | 17.10/0.4070 17.68/0.4191
DRBN [40] 22.31/0.6788 21.02/0.6016 21.65/0.6328 22.49/0.6419 | 20.20/0.5374 21.25/0.5845
Linear amplication 16.37/0.5892 16.06/0.5234 16.20/0.5522 17.53/0.5011 | 16.87/0.4296 17.17/0.4609
LR3M [41] 18.47/0.6109 17.48/0.5132 15.99/0.5407 16.72/0.4628 | 15.67/0.3687 13.66/0.3953
Retinex-Net [39]  +Super-FAN [2] 19.43/0.6316 18.35/0.5451 19.36/0.5772 18.83/0.5832 | 17.38/0.4763 16.80/0.4361
SID [23] 22.79/0.7117 20.80/0.6024 21.63/0.6483 20.58/0.5734 | 18.62/0.4615 19.44/0.5087
HDR-net [1] 21.90/0.7001 20.27/0.5972 20.94/0.6398 19.72/0.6364 | 18.27/0.5274 18.86/0.5734
RUAS [42] 18.53/0.5988 17.44/0.5171 17.86/0.5304 17.83/0.4820 | 16.43/0.3978 16.99/0.4167
DRBN [40] 21.37/0.6697 20.09/0.5840 20.71/0.6163 20.54/0.5434 | 18.93/0.4701 19.71/0.4977
Super-FAN [2] 21.50/0.7326 19.82/0.5930 20.57/0.6386 20.42/0.5854 | 17.09/0.4501 18.47/0.4875
Linear amplication 18.70/0.6463 17.86/0.5563 18.22/0.5936 19.38/0.5447 | 18.01/0.4487 18.62/0.4889
LR3M [41] 16.51/0.5875 15.89/0.5113 17.65/0.5699 17.41/0.4707 | 16.43/0.3896 17.43/0.4555
Retinex-Net [39] +Wavelet-SRNet[28] 20.24/0.6508 18.61/0.5413 19.31/0.5869 19.68/0.5591 | 17.41/0.4410 18.35/0.4898
SID [23] 22.87/0.7159 20.47/0.5966 21.46/0.6467 20.58/0.5818 | 18.23/0.4588 19.14/0.5099
HDR-net [1] 23.21/0.7086 20.89/0.5956 21.84/0.6421 22.71/0.6648 | 19.91/0.5386 21.06/0.5908
RUAS [42] 18.85/0.6018 17.64/0.5269 18.18/0.5425 18.14/0.4861 | 16.80/0.4102 17.40/0.4309
DRBN [40] 21.95/0.6725 20.88/0.5992 21.43/0.6286 21.52/0.5636 | 19.95/0.4934 19.71/0.4977
Wavelet-SRNet[28] 20.45/0.6914 19.48/0.6084 19.93/0.6401 17.74/0.5463 | 17.29/0.4727 17.66/0.5027
Linear amplication 18.22/0.6032 17.65/0.5394 17.93/0.5680 18.79/0.5227 | 18.24/0.4791 18.24/0.4791
LR3M [41] 8.85/0.3622 8.71/0.3254 8.88/0.3525 10.93/0.3235 8.71/0.3254 10.95/0.3146
Retinex-Net [39] +NLSA [29] 19.65/0.5909 18.57/0.5139 19.09/0.5486 19.43/0.5299 | 17.67/0.4356 18.41/0.4750
SID [23] 23.44/0.7296 20.81/0.5990 21.86/0.6533 21.42/0.6059 | 19.81/0.5262 19.81/0.5262
HDR-net [1] 23.08/0.7078 20.86/0.5928 21.78/0.6411 23.14/0.6748 | 20.15/0.5489 21.32/0.5875
RUAS [42] 19.19/0.5867 18.31/0.5369 18.62/0.5216 18.66/0.4841 | 17.36/0.4231 17.88/0.4194
DRBN [40] 21.21/0.6559 21.27/0.6171 21.49/0.6299 20.68/0.5429 | 20.27/0.5107 20.75/0.5207
NLSA[29] 24.68/0.7581 22.63/0.6749 22.78/0.6863 23.27/0.6338 | 17.62/0.4659 21.50/0.5641
Ours 24.85/0.7694 22.95/0.6908 23.44/0.7039 23.69/0.6479 | 22.07/0.5830 22.25/0.5878
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TABLE II
ABLATION STUDY SHOWING THE QUANTITATIVE PERFORMANCES (PSNR
AND SSIM) WITH INDIVIDUAL MODULES UNDER DIFFERENT SETTINGS:
“W/0 ANALYSIS,” “W/O DEGREES,” “W/0 FACES,” “W/0 LL” AND “W/0O

LR”

[ PSNR | SSIM
w/o analysis | 21.97 | 0.6731
w/o degrees 23.34 | 0.7024
w/o faces 22.70 | 0.6915
w/o LL 23.03 | 0.6960
w/o LR 22.87 | 0.6995
ours 2344 | 0.7039

TABLE III

THE OBJECTIVE METRICS (EA AND CS (1)) FOR DIFFERENT SCALES OF
LOW-ILLUMINATION AND LOW-RESOLUTION.

[ EA | CS()
Low-illumination | 13.41% | 36.21%
Low-resolution 74.08% 100%

in terms of measured by the cosine similarity score.

D. Computational Complexity

Table VI compares the computational complexity of our
method with that of other models in terms of parameter size
and run-time. Our algorithm consumes longer run-time and
more model parameters than the other models employed in the
comparison. However, the run-time increase is still reasonable.

E. Ablation Study

Settings of Ablation Study. In this section, we conduct
an ablation study to examine the effectiveness of individual
modules, focusing on the analysis of low-light, LR, and facial
degradation. The test images are randomly down-sampled
to different resolutions. The ablation study settings consist
of the following: 1) our method with all modules (“Ours”),
2) our method without analysis of facial degradation and
features (“w/o analysis”), 3) our method without degradation
degree setting (“w/o degrees”), 4) our method without face
feature estimation (“w/o faces”), 5) our method without low-
light decoupling (“w/o LL”), and 6) our method without LR
decoupling analysis (“w/o LR”).

Fig. 6 illustrates the results of different module settings.
The results without LL and LR exhibit unclear details and
artifacts. Their corresponding PSNR and SSIM scores, as
shown in Table II, are poor. Analyzing image quality solely
based on a single degradation factor is inaccurate in en-
vironments with complex types of degradation, leading to
subpar reconstruction results. The absence of facial features
adversely affects the results of the setting “w/o faces”, re-
sulting in imperfect face details. The poor PSNR and SSIM
performances highlight the importance of extracting robust
facial features in reconstruction. Comparing the quantitative
performances of the setting “w/o degrees” in Table II, our
method achieves better reconstruction of details degraded by
low-light and low-resolution. Moreover, Fig. 6 shows that our
method achieves evident subjective performance improvement
over the compared models, particularly in recovering facial
details. Therefore, introducing greater detail degradation as a
training constraint enhances face reconstruction.
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TABLE IV
QUANTITATIVE PERFORMANCE (PSNR AND SSIM) COMPARISON UNDER
DIFFERENT LR AND LOW-LIGHT CONDITIONS

[ sizes | HDR-net | Super-FAN | OURS
Face; PSNR/SSIM PSNR/SSIM PSNR/SSIM
I'=20 56 x 56 | 24.50/0.7930 | 20.83/0.7867 | 25.80/0.8500
48 x 48 | 23.79/0.7682 | 20.08/0.7571 | 25.41/0.8395
40 x40 | 23.01/0.7386 | 19.26/0.7254 | 24.75/0.8237
I'=40 56 x 56 16.33/0.7557 | 20.48/0.7890 | 25.45/0.8474
48 x 48 16.09/0.7315 | 20.04/0.7586 | 25.23/0.8380
40 x40 | 15.45/0.6991 19.06/0.7248 | 24.57/0.8171
I'=60 56 x56 | 14.91/0.7366 | 20.96/0.7862 | 24.72/0.8416
48 x 48 14.65/0.7127 | 20.59/0.7587 | 24.17/0.8269
40 x40 | 14.14/0.6796 | 20.05/0.7263 | 23.96/0.8062
=280 56 x56 | 13.71/0.7141 | 20.84/0.7849 | 23.03/0.8298
48 x 48 13.57/0.6924 | 20.52/0.7571 | 22.90/0.8169
40 x40 | 12.94/0.6609 | 19.92/0.7242 | 22.53/0.7895
Facep PSNR/SSIM PSNR/SSIM PSNR/SSIM
I'=20 56 X 56 | 19.22/0.6368 18.61/0.6318 | 21.25/0.7084
48 x 48 18.78/0.5989 | 18.34/0.6036 | 20.80/0.6830
40 x40 | 18.63/0.5565 17.55/0.5547 | 20.13/0.6418
I'=40 56 x 56 | 17.38/0.6052 | 19.15/0.6287 | 20.90/0.6908
48 x 48 16.89/0.5693 18.77/0.6020 | 20.53/0.6674
40 x40 | 16.84/0.5299 | 18.08/0.5558 | 19.88/0.6272
I'=60 56 x 56 | 14.69/0.5507 | 19.01/0.6180 | 20.38/0.6701
48 x 48 14.73/0.5263 18.63/0.5894 | 20.00/0.6448
40 x 40 14.75/0.4946 18.12/0.5499 | 19.54/0.6094
I'=280 56 x56 | 13.03/0.5106 | 18.75/0.6094 | 19.92/0.6555
48 x 48 12.97/0.4863 18.42/0.5817 | 19.59/0.6325
40 x40 | 12.85/0.4548 17.80/0.5387 | 19.16/0.5913

Degradation Parameter Validation. We also validate the
estimated degree of low-light and LR degradation. We conduct
the corresponding test on CelebA, using the same random low-
quality dataset as described in Sec. IV-B. The test results in-
volve different levels of random low-light and LR degradation.
To assess the accuracy of these estimates, we use objective
metrics such as Exact Accuracy (EA) and Cumulative Score
(CS) [58]. Specifically, EA measures the correctness of il-
lumination and resolution labels within a specified tolerance
level n, while CS calculates the percentage of test labels with
absolute errors less than or equal to n. In Table III, we present
the scale accuracy of resolution and illumination, showing that
the resolution scale accuracy is highly precise, with CS(1) even
approaching 100%. However, the illumination scale accuracy
is relatively lower, as obtaining accurate values that express
the extent of illumination reduction for different pixels in the
images is challenging. Nonetheless, the illumination enhance-
ment decoder compensates for the inaccuracies in illumination
analysis to some extent, leading to promising experimental
results for low-light enhancement.

F. Performances on Real-World Dark Face Images

1) Validation on D-faces+: We also conduct evaluations
of our method on real-world images, which are recovered
using models trained on synthetic low-light images from
CelebA. Fig. 7 shows a collection of frontal and non-frontal
face images captured under various illumination conditions,
including surveillance camera footage and other real low-
lighting facial datasets. The Size and M _I values correspond
to the resolution and mean intensity of the images. The two
bottom images depict the same person under different lighting
conditions. The input low-light images are interpolated to
the target size using the BICUBIC method. It is evident
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TABLE V
COMPARISON OF COSINE SIMILARITY SCORES BASED ON ARCFACE EMBEDDING FOR EVALUATING THE FACE RECOGNITION PERFORMANCE ON
RECONSTRUCTED FACES WITH VARIOUS RESTORATION MODELS, WHERE A HIGHER VALUE INDICATES A BETTER PERFORMANCE

[ SID | HDR-net [ DRBN | Wavelet-SRNet [ Super-FAN [ NLSA | Ours

CelebA | 0.4926 0.4883 0.4868 0.4986 0.4542 0.5017 | 0.5251
Helen 0.4906 0.4823 0.4666 0.4566 0.4870 0.4054 | 0.5238
TABLE VI

COMPUTATIONAL COMPLEXITY COMPARISON AMONG THE METHODS IN TERMS OF MODEL PARAMETER SIZE (M) AND RUN-TIME (MS)

| SID [ HDR-net | DRBN [ RUAS [ Wavelet-SRNet | Super-FAN [ NLSA [ Ours

Parameter size (M) | 7.76 0.43 0.56 0.003 7499.93 1.30 1.81 19.90
Run-time (ms) 14.0 10.0 56.4 18.4 38.2 21.0 18.0 63.8

.gh \E\E\EE\E\
3300

Inputs w/o analysis w/o degrees w/o faces w/o LL w/o LR OURS Tagets

”» <

Fig. 6. Ablation study examining the effectiveness of individual modules, where six variants are compared: “our method,” “w/o analysis,
“w/o faces,” “w/o LL,” and “w/o LR.”

BEE.E.E

Size:47x55 M_1:14.74

Size:41x56 M_1:3.39

_

Size:64x64 M_1:18.25

HEE

Size:64x64 M_1:6.72
N e HDR-net+ HDR-net+
Inputs Linear Amplification HDR-net Super-FAN Wavelet-SRNet Super-FAN Wavelet-SRNet Ours

w/o degrees,”

Fig. 7. Qualitative performance comparison of faces with different sizes captured in real nighttime scenes.
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TABLE VII
SUBJECTIVE EVALUATION SCORES OF VARIOUS RESTORATION MODELS
ON FACE IMAGES CAPTURED AT NIGHTTIME

| Subjective Scores

HDR-net 3.2
HDR-net+Super-FAN 3.2
HDR-net+Wavelet-SRNet 3.3
Super-FAN 5.5
Wavelet-SRNet 3.7
OURS 6.8

Fig. 8. Three samples of low-quality (top) and high-quality (bottom) face
pairs.

from the linearly zoomed images that the inputs suffer from
low-light degradation and blurs. The results from Super-FAN
and Wavelet-SRNet exhibit artifacts and lack clear details.
While the results from SID achieve excellent enhancement
in low light, they lack clear facial texture, especially for low-
resolution images. In comparison, our method not only re-
covers the most detailed information without artifacts but also
ensures clear and recognizable faces. Our approach effectively
removes noise while preserving natural lighting.

We further evaluate the performances based on the non-
reference metrics CEIQ [59] and NIQE [60], and the cosine
similarity of ArcFace embedding for face recognition on real
faces. These non-reference metrics provide insights into image
quality. Additionally, we utilize cosine similarity to measure
the improvement achieved by our method. To compare the
results, we capture images of the same individuals under both

Size 17x23 .
Size 49x60 ) ‘
. '
Size 55x79 Linear
Inputs amplification Super-FAN  Wavelet-SRNet Ours

Fig. 9. Illustration of failure cases of face restoration in real nighttime scenes.
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TABLE VIII
COMPARISON OF NON-REFERENCE QUALITY METRICS (CEIQ [59] AND
NIQE [60]) AND THE COSINE SIMILARITY OF ARCFACE EMBEDDING FOR
FACE RECOGNITION ON REAL FACES

CEIQ | NIQE cosine similarity

C_Fsl C_Fs2 C_Fs3
HDR-net 2.71 29.11 | 0.2784 | 0.2261 | 0.5335
HDR-net+Super-FAN 2.79 38.65 | 0.2764 | 0.2213 | 0.5138
HDR-net+Wavelet-SRNet 2.87 29.85 | 0.3139 | 0.2358 | 0.4950
Super-FAN 342 41.79 | 0.3883 | 0.3761 | 0.4403
Wavelet-SRNet 3.40 36.81 | 0.4043 | 0.3399 | 0.4753
OURS 2.97 36.28 | 0.4115 | 0.4573 | 0.5387

low-quality and high-quality conditions, as shown in Fig. 8.
Subsequently, we enhance the low-quality images and measure
the similarity between these enhanced images and the high-
quality images of different individuals.

We also evaluate the subjective quality of the restored faces.
Since the corresponding ground-truth images are not available,
we cannot measure PSNR and SSIM. To assess the subjective
quality of the reconstructed images, we randomly select image
groups from our algorithm and a comparison algorithm. Each
group consists of 6 cases of reconstructed images, which
are then ranked by subjects based on their subjective scores
ranging from 1 to 10, where a higher score indicates a better
subjective quality. The results, obtained through a significant
number of statistics, are presented in Table VIII, demonstrating
that our subjective scores are higher overall.

2) Failure Cases: Our algorithm does have limitations
when it comes to the resolution of real images. Fig. 9 depicts
some failure cases, particularly in extreme cases such as very
low resolution (the first row), extremely low light (the second
row), and complex illumination conditions (the third row). An
insufficient resolution leads to blurry results, while inadequate
illumination causes color distortion. Moreover, our method
may fail to enhance images in complex illumination scenes.
These limitations arise partly due to expressiveness constraints
used in our method and partly due to the limited recoverable
information from the data source. Real-world degradation
involves various factors, including resolution, illumination, and
other complex scenarios that are challenging to address with
a generic decoupling model. Although Super-FAN performs
better in low-quality faces with complex illumination, it still
suffers from artifacts. Overall, our model applies to most real
degradation scenes. However, in our future work, we aim to
develop more comprehensive representation models to handle
complex degradation in real scenes, making them applicable
in various scenarios.

V. CONCLUSION

Our work addresses the issue of enhancing low-quality, low-
light face images affected by complex degradation in real
scenes. The presence of random and complex degradation
factors poses challenges for existing face restoration methods.
We approach low-quality face enhancement in a complex
environment by parsing and feature extraction. We proposed
to learn robust facial features by decoupling the degradation
process to achieve precise reconstruction and representation of
the face.From our experiments, we have identified certain limi-
tations in our method. In specific real-world scenarios, such as
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extremely low resolution, extremely low-light conditions, and
non-uniform illumination, our algorithm struggles to achieve
satisfactory recovery of face images. Additionally, there are
some flaws in the details of our results, particularly in the eyes.
In future work, we aim to analyze the degradation process
and intricate details of face images more comprehensively.
We anticipate improved details recovery in these challenging
situations by incorporating specific constraints.
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