
Shu et al. / J Zhejiang Univ Sci A   2009 10(4):535-545 535

                                                        
 
 
 

Adaptive triangular mesh coarsening with 
centroidal Voronoi tessellations* 

 
Zhen-yu SHU†1,2, Guo-zhao WANG†‡1, Chen-shi DONG1 

(1Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University, Hangzhou 310027, China) 
(2Laboratory of Information and Optimization Technologies, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China) 

†E-mail: littlerain_szy@sohu.com; wgz@math.zju.edu.cn 
Received Mar. 28, 2008;  Revision accepted July 30, 2008;  Crosschecked Feb. 9, 2009 

 
Abstract:    We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input 
triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a so-called red-green split. 
Second, the refined mesh is simplified by a clustering algorithm based on centroidal Voronoi tessellations (CVTs). The accuracy 
and good quality of the output triangular mesh are achieved by combining adaptive subdivision and the CVTs technique. Test 
results showed the mesh coarsening scheme to be robust and effective. Examples are shown that validate the method. 
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INTRODUCTION 

 
Nowadays, large meshes are commonly used in 

numerous application areas including computer aided 
design, medical imaging and virtual reality. Large 
polygonal meshes are produced as piecewise linear 
approximations of 3D object surfaces. Using modern 
range scanning devices, it is possible to acquire 
models consisting of several million or even billion 
polygons. Irrespective of the domains of applications, 
large meshes require simplification to be handled at 
all. However, in finite element analysis, the quality of 
the triangular mesh is also important as it may affect 
the accuracy of the numerical results. Therefore, it is 
necessary to reduce the number of elements in the 
mesh to a reasonable level, while preserving the ac-
curacy of the geometric approximation and the mesh 
quality.  

In this paper, we present a new triangular mesh 
coarsening algorithm, which resamples the surface 
mesh to an adaptive mesh with much fewer elements 
than the original mesh. We combine the adaptive 
subdivision operator (Bank et al., 1983; Vasilescu 
and Terzopoulos, 1992; Verfürth, 1994) with cen-
troidal Voronoi tessellations (CVTs) (Du et al., 1999) 
to obtain a more accurate approximation to the initial 
mesh and to output a remeshing surface with high 
quality. Adaptive subdivision splits those triangles 
that satisfy some prescribed criteria according to 
surface curvature, while other triangles remain coarse. 
This operator adapts the size of triangles in the mesh 
to the local curvature of the underlying surfaces. 
CVTs are Voronoi tessellations of a region such that 
the generating points of the tessellations are also the 
centroids of the corresponding Voronoi regions. Such 
tessellations are theoretically the optimal strategy for 
resampling (Du et al., 1999). By combining the two 
techniques above, the algorithm can generate adap-
tive triangular meshes with high quality. 
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PREVIOUS WORK 
 
Over the last decade, an abundance of simplifi-

cation algorithms has been proposed. One group of 
very useful algorithms (Schroeder et al., 1992; Cohen 
et al., 1996; Hoppe, 1996; El-Sana and Varshney, 
1997; Garland and Heckbert, 1997; Kobbelt et al., 
1998; Lindstrom and Turk, 1998; Zelinka and Gar-
land, 2002) is iterative in nature, applying small, local 
changes to the mesh, each of which removes a small 
set of triangles and replaces it with a different, smaller 
set of triangles. This approach is primarily concerned 
with approximation error and preserving topology 
and does not emphasize sampling or the quality of 
triangles. A detailed survey was reported by Garland 
(1999). 

Another group of algorithms (Eck et al., 1995; 
Lee et al., 1998; Kobbelt et al., 1999; Guskov et al., 
2000; Hormann et al., 2001) is based on a special 
structure, the so-called ‘subdivision connectivity’. 
This special type of mesh connectivity is generated by 
iteratively applying a uniform subdivision operator to 
a coarse base mesh. The main advantage of subdivi-
sion connection meshes is the direct availability of 
multiresolution algorithms, since different refinement 
levels provide levels of detail. However, the base 
mesh construction and the vertex sampling are not 
easy to control.  

The third group of algorithms is related to 
remeshing approaches, which input a triangular mesh 
and resample it such that the new tessellations still 
approximate the same surfaces but also satisfy some 
quality requirements. Remeshing algorithms using 
these methods (Turk, 1992; Hoppe et al., 1993; Frey 
and Borouchaki, 1998; Frey, 2000) are usually based 
on local modification operators enabling simplifica-
tion (e.g., vertex or edge collapsing), enrichment 
(edge splitting), or improvement (e.g., node reloca-
tion or edge swapping). More recent works (Alliez et 
al., 2002; 2003a; 2003b; 2005; Gu et al., 2002) are 
based on global parameterization of the original mesh, 
and then on resampling in the global parametric space. 
These techniques yield good results, but have the 
disadvantages of heavy computational load and nu-
merical instability. The simplified alternatives to 
global parameterization are local parameterization 
methods (Surazhsky and Gotsman, 2003; Surazhsky 
et al., 2003). Sifri et al.(2003) and Peyré and Cohen 

(2006) presented methods for remeshing surfaces 
using geodesic path calculations. The results gave a 
set of vertices uniformly or adaptively distributed on 
the surface. The survey by Alliez and Gotsman (2003) 
provided more information on these methods. 

Valette and Chassery (2004) proposed a fast and 
efficient algorithm for uniform coarsening, which can 
be used for large models. The first step of this method 
is clustering of the mesh triangles into an approxi-
mation of CVTs. The second step consists of replac-
ing each cluster by a vertex, and then constructing the 
Delaunay triangulation according to the CVTs. This 
method outputs meshes with high subsampling ratios 
and high mesh quality. Valette et al.(2005) extended 
the method of (Valette and Chassery, 2004) to include 
adaptive behavior by regarding local estimated cur-
vatures as weights in the energy term to be minimized 
when clustering. They also introduced some methods 
to speed up the clustering and guarantee the validity. 
In this paper, we improve the method of (Valette and 
Chassery, 2004) by incorporating a curvature-adapted 
behavior in a different way from (Valette et al., 2005). 
The experimental results show that our method can 
produce better results. Valette et al.(2008) presented a 
generic framework for 3D surface remeshing based 
on metric-driven discrete Voronoi diagram construc-
tion. It can efficiently produce anisotropic or isotropic 
results at low computational cost. 

Cohen-Steiner et al.(2004) introduced a new 
concept called ‘shape proxy’. Using this concept, they 
drove the distortion error down through repeated 
clustering of faces into best-fitting regions. The final 
partition regions approximate the result of the CVTs 
based on a new error metric. Because the partition 
regions have no guarantee of being almost flat and 
convex, the output polygonal mesh needs some 
post-processing.  

 
 
OUTLINE OF OUR ALGORITHM 

 
Our algorithm inputs a triangular mesh M, and 

outputs an adaptive triangular mesh with much fewer 
triangles than the original mesh M. There are two 
main steps in the algorithm: 

(1) Adaptive refinement: To calculate the cur-
vature of every triangle in the input mesh and then to 
apply a red-green split on the triangles that satisfy a 
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prescribed criterion according to the curvature.    
(2) Coarsening mesh: To partition the input mesh 

into n regions based on CVTs and then to construct 
the dual Delaunay triangulation. The method we shall 
present is based on (Valette and Chassery, 2004). 
However, we modify the energy term adopted by 
them and add a new constraint term to make the re-
sulting meshes adapt to the curvature. Also, we use 
different methods to estimate the density function and 
to avoid the clusters falling into several departments. 

 
 
ADAPTIVE REFINEMENT 

 
Like (Surazhsky and Gotsman, 2003), we use the 

triangle area as a factor to produce a mesh reflecting 
the curvature of the original mesh. Intuitively, the 
large curved regions of M will contain small triangles 
and a dense vertex sampling, while almost flat regions 
will have large triangles with more sparse vertices. 
We need only to specify the ratios between triangle 
areas depending on the curvatures to define a curva-
ture function. 

For every vertex v of the triangle mesh M, we use 
the method of (Meyer et al., 2002) to estimate the 
discrete Gaussian and mean curvatures, denoted as 
K(v) and H(v), respectively. Then we define a hybrid 
curvature function as [Surazhsky and Gotsman (2003) 
used the function to define the density function] 

 
F(v)=0.5K(v)+0.5H2(v). 

 
For every triangle t(v1, v2, v3) of the mesh M, we 

define the refinement criterion function as 
 

D(t)=(F(v1)+F(v2)+F(v3))/3. 
 
The function D(t) is sensitive to noise in either 

the geometry or the connectivity of the mesh M 
(Fig.1). To alleviate this, we truncate all extreme 
values of D(t). We will use some statistical tools to 
process the data calculated by the function D(t). Let 
D  be the mean of D(t) and D  be the standard de-
viation of D(t) on the mesh. We have 
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where ti is a triangle in the mesh M, and m denotes the 
number of triangles in M. 

For each triangle ti in the mesh, we truncate its 
corresponding curvature D(ti) by the following rule: 
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We also assign a threshold value δ according to 

the deviation value of D(t): 
 

,D Dδ α= +  
 
where α is a positive user-defined value. Usually we 
use α=0.8. 

We split the triangle t into four small triangles, 
where D(t) is greater than the given threshold δ. Other 
triangles remain coarse. To avoid cracks in the mesh 
where two triangles from different levels meet, we 
have to use a special technique called ‘red-green tri-
angulation’ (Bank et al., 1983; Vasilescu and Ter-
zopoulos, 1992; Verfürth, 1994). A normal 1-to-4 
split is called a red split. To fix cracks in the mesh, 
triangle bisection is used, which is called a green split. 
We assign red color to the triangle where D is greater 
than the value δ. The remaining triangles are assigned 
green color. First, we subdivide all red triangles using 
a 1-to-4 split. Second, we deal with the green triangles 
according to the color of their neighboring triangles. 
We divide the green triangles into four groups (Fig.2): 

(1) There is no red triangle around the green 
triangle (Fig.2a). We do nothing to this green triangle. 

(2) There is one red triangle around the green 
triangle (Fig.2b). We split the common edge between 

Fig.1  Curvature estimation on the Stanford Bunny
The regions in light color represent regions with large
curvature and those in deep color represent the regions
with small curvature 
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the red triangle and blue triangle at the midpoint. The 
green triangle is replaced with two small triangles. 

(3) There are two red triangles around the green 
triangle (Fig.2c). The green triangle is replaced with 
three small triangles. 

(4) There are three red triangles around the green 
triangle (Fig.2d). We subdivide the green triangle 
using a 1-to-4 split. 
 
 
 
 
 
 
 
 
 

It is easy to see that we will obtain a mesh on 
which the regions with larger curvature contain more 
triangles than the regions with smaller curvature if we 
keep doing the adaptive refinement operation itera-
tively on M (Fig.3). In general, we repeat the adaptive 
refinement operation on M several times. To decide 
how many times are enough, we introduce a ratio as a 
measure. Let A be a set that contains some triangles. 
The size of A is denoted by n(A) and the total sum of 
the area of triangles in A is denoted by s(A). Now we 
define τ(A)=n(A)/s(A), and τ represents the number of 
triangles per unit area. Then we divide all triangles in 
M into two sets, denoted as A1 and A2. A1 contains all 
the triangles whose curvature is greater than D  and 
A2 contains all the other triangles. Let λ=τ(A1)/τ(A2), 
and λ measures the ratio of the number of triangles 
with higher curvature per unit area, which contain 
more detailed features of the model, to the number of 
 

 
 
 
 
 
 
 
 
 
 
 
 

triangles with lower curvature per unit area. Appar-
ently, the goal of a red-green split is to make λ greater. 
In practice, we do a red-green split on M iteratively 
until λ is greater than a certain value β, which is de-
cided by the user. Then we can obtain the ideal mesh. 
Generally, a greater β leads to more red-green splits, 
and we should balance the quality and the perform-
ance. In this paper, we use β=2. 
 
 
COARSENING MESH 

 
In this section, we will briefly introduce CVTs 

[details can be found in (Du et al., 1999)] and then 
present our clustering algorithm following the work 
of (Valette and Chassery, 2004).   
 
Centroidal Voronoi tessellations 
Definition 1    Given an open set Ω of úm, and n dif-
ferent points zi (i=0, 1, ..., n−1), the Voronoi tessella-
tions can be defined as n different regions Vi such that 

 

{ }( , ) ( , ), 0,1, ..., 1, ,i i jV x Ω d x z d x z j n j i= ∈ < = − ≠

 
where d is a function of distance. 

Given a region V and a density function ρ(x) 
defined on V, the mass centroid z* of V is defined by 

 
* ( )d ( )d .

V V
z x x x x xρ ρ= ∫ ∫  

 
Thus, given n points zi (i=0, 1, ..., n−1), in the domain 
Ω, we can define their associated Voronoi regions Vi 
(i=0, 1, ..., n−1), which form a tessellation of Ω. 
Given the regions Vi (i=0, 1, ..., n−1), we can also 
define their mass centroids zi

* (i=0, 1, ..., n−1). 
Definition 2    Given the set of points zi (i=0, 1, ..., 
n−1), in the domain Ω and a positive density function 
ρ(x) defined on the domain Ω, a Voronoi tessellation 
is called a CVT if  

 
zi=zi

*,  i=0, 1, ..., n−1. 
 

That is, the points zi are both the generators and the 
centroids of the Voronoi regions Vi. The correspond-
ing dual Delaunay triangulation is referred to as 
CVDT. 

(a) (b) (c) (d) 

Fig.2  The red-green triangulation 
(a)~(d) correspond to zero, one, two and three red trian-
gle(s) around the green triangle, respectively 

Fig.3  The Stanford Bunny mesh by adaptive refinement 
(applied twice to the input mesh)  
(a) The whole mesh; (b) The enlarged picture of a selected
region 

(a)                                                    (b) 
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Moreover, CVTs minimize the energy given as 
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One way to build a CVT is to use Lloyd’s re-

laxation method (Lloyd, 1982). Valette and Chassery 
(2004) presented a fast approach to approximating the 
CVTs, based on the global minimization of the energy 
term E defined in Eq.(1). Here, our face clustering 
method is based on their method, but we simplify the 
energy term E in a different way. 

 
Our face clustering method 

Like (Valette and Chassery, 2004), we want to 
construct CVTs on a discrete set: a triangular mesh M. 
We approximate a Voronoi region to be the union of 
several triangles of the mesh M. Each region Vi is the 
union of several triangles tj of the mesh M, and each 
triangle tj belongs to only one region Vi. Constructing 
such tessellations becomes a clustering problem: we 
want to merge all triangles of M into n regions Vi, 
where each region has only one connected component. 
However, if we minimize the energy term described 
in Eq.(1) directly, it is difficult to produce a curvature 
adapted coarsened mesh. The main reason is that, 
although we execute adaptive refinement to the mesh 
first, the effect of adaptive refinement is greatly re-
duced by face clustering. Many triangles split from 
the same triangle in the refinement phase are clustered 
into one region again when minimizing the energy 
leading to a fairly uniform result. To make the re-
sulting mesh adapt to the curvature distribution of the 
original mesh, we must retain the effect of adaptive 
refinement. Thus, we need to add some constraints to 
Eq.(1) to prevent the split triangles from being 
merged into one region. Let mi be the number of the 
triangles that belong to region Vi and m be the mean of 
mi. We modify the energy term in Eq.(1) and rewrite it 
as 
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= ∑  and r is a positive user-given 

parameter, which controls the curvature adapted be-

havior. If r=0, Eq.(2) is the same as Eq.(1). The higher 
value of r will prevent the triangles split in the adap-
tive refinement step from being merged more strictly. 

The centroids zi of regions Vi can be rewritten as 
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To calculate the centroids yj of triangles tj, 

yj=(v1+v2+v3)/3, where v1, v2, v3 are the vertices of the 
triangle tj, we denote the area of the triangle tj as sj, 
which can be computed as d .

j
j t

s x= ∫  

Now we can approximate the energy term E and 
the centroids zi as follows: 
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We denote the mass of the triangle tj as wj, which 

can be calculated as wj=ρ(yj)sj. We assume that the 
mass on each triangle of the mesh is the same; i.e., the 
mass is distributed uniformly on the mesh, although 
the density function is not uniform. Then, the energy 
term and the centroids are simplified further: 
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By combining Eqs.(4) and (5) we obtain 

 
2

1
(2) 2

0
|| || 1 .

j i j i j i

rn
i

j j
i t V t V t V

m
E y y

m

−

= ∈ ∈ ∈

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  (6) 

 
Obviously, minimizing E(2) is equivalent to 

minimizing E(3) described below: 
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At this point, the energy term E(3) only depends 
on the chosen clustering of the input mesh. We no 
longer need to explicitly compute the positions of the 
Voronoi sites. We minimize the above energy term E(3) 
in Eq.(7) with an iterative algorithm (Valette and 
Chassery, 2004). 

We also follow the triangulation method of 
(Valette and Chassery, 2004) to construct the dual 
mesh according to the results of the final clustering. 
Then we obtain the coarsening triangular mesh. 

 
Mesh coarsening method 

There are four main steps to obtain the coarsened 
mesh [details can be found in (Valette and Chassery, 
2004)]: 

Step 1: Initialization. A number n is chosen as 
the number of clusters. This number is decided by the 
user. Then we decompose the input mesh into n re-
gions. Usually, we use a region-growing strategy to 
achieve this. We randomly pick n different seed tri-
angles in the mesh as seed regions and aggregate 
adjacent triangles to seed regions until no regions can 
be grown. 

Step 2: Energy minimization. For each boundary 
triangle (which is on the boundary of a cluster), we 
compute the value of E(3) in two cases: (1) The initial 
configuration—tj belongs to the cluster Vi, and is the 
neighboring triangle of the cluster Vk; (2) Vk grows 
and Vi shrinks, and tj belongs to Vk. The case resulting 
in the smallest energy E(3) is chosen and the cluster 
configurations are updated. 

Step 3: Repeat Step 2 until a satisfactory con-
vergence is achieved (Fig.4). 

Step 4: The dual Delaunay triangulation is 
similar to Delaunay triangulations, where a triangle is 
created for each point where three Voronoi regions  
 
 
 
 
 
 
 
 
 
 
 
 

meet. The three vertices of the triangle are the three 
Voronoi seeds. Here, the Voronoi seeds are approxi-
mated by choosing the closest points to the cluster 
centroids. The ambiguous cases exist when more than 
three different Voronoi regions meet at one single 
point. As a consequence, if k clusters meet at one 
single vertex, then we create k−2 triangles.  
 
Cluster separation detection 

In practice, the algorithm may output some 
clusters that contain several disconnected components. 
This will be a problem in the dual Delaunay triangu-
lation. Valette and Chassery (2004) presented a 
method to fix it. However, we adopt a different 
method, similar to the one introduced by Valette et 
al.(2005), to solve it. The method is based on 
boundary testing. The details are as follows: when a 
triangle T is removed from a Voronoi region V1 and 
added to another Voronoi region V2, if it will lead to 
the shape of V1’s boundary looking like ‘∞’ (Fig.5b), 
i.e., there is a vertex P that has four connected edges 
on V1’s boundary, let the value of E(3) be infinite. It 
will prevent T from being removed from V1 and also 
prevent V1 from being divided into several discon-
nected parts. Although we use this method each time 
when energy testing, the expense of this method is 
low because the boundary information has already 
been cached when clustering. In our experience, this 
step is efficient and costs only about 10% of the total 
clustering time. Using this method, no Voronoi region 
will ever fall into several disconnected parts when 
clustering. The speed of coarsening could be im-
proved compared to the method of (Valette and 
Chassery, 2004) for there is no need to repeat the 
energy minimization step. There is also no need to 
worry about the validity of the clustering anymore. 

 
 
 
 
 
 
 
 
 

 
 
 

Fig.4  Result of the face clustering algorithm on the
Stanford Bunny 

P

T

V2 

V1 
P 

T 
V1 

V2 

(a)                                                   (b) 
Fig.5  Boundary testing 

(a) Before the testing; (b) After the testing 

Boundary of V2Boundary of V1 
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Post-process 
At the end of the algorithm, we use a 

post-process to further improve the quality of the 
coarsening mesh. A uniform refinement is obtained 
by using a 1-to-4 splitting operator. We apply the 
uniform refinement iteratively three times to the 
coarsening mesh Mc, which we generate in the above 
context. Then we choose the vertex number of the 
mesh Mc as the number of clusters, and use the 
method in the subsection “Mesh coarsening method” 
to coarsen the mesh after refinement again. This 
post-process can be treated as a remeshing algorithm. 
A comparison of our experimental results with and 
without post-process is made in the next section. It 
shows that the post-process step further improves the 
resulting meshes’ quality. 

 
 
EXAMPLES 

 
In this section, we show the results of testing our 

adaptive coarsening algorithm on five models: 
Rocker Arm, Stanford Bunny, Igea Artifact, Venus, 
and Laurent’s Hand. The results are given in 
Figs.6~11 and Tables 1 and 2. 

The traditional way of measuring the quality of a 
triangular mesh is by measuring the geometric prop-
erties of the resulting triangles. For the geometry, 
statistics are usually collected on the minimal angle of 
the triangles. Obviously this value is anywhere be-
tween 0° and 60°. For a high-quality mesh, the 
minimum of these values should be no less than 10°, 
and the average should be no less than 45° according  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to (Surazhsky and Gotsman, 2003). Table 1 shows the 
results obtained for the models presented in this paper. 
The column of Nvo shows the number of vertices in 
the original mesh. The column of Nvc shows the 
number of vertices in the coarsened mesh. We also 
measured the output mesh based on the triangles’ 
shapes [minimal quality Qmin and average quality Qav, 
which range between 0 and 1, as defined by Frey and 
Borouchaki (1997)]. Table 1 also shows the Haus-
dorff distance d (as a percentage of the mesh bound-
ing box diagonal) between the original model and the 
coarsened one, measured with the Metro tool 
(Cignoni et al., 1998).  

In Table 2, we compare our results with those of 
quadric error metrics (QEM) (Garland and Heckbert, 
1997). 

As we have seen, our algorithm can produce 
meshes adapted to the local curvature of the under-
lying surface. It allows us to match surface features 
(Figs.7, 9a, 9c, 9e and 11) better than uniform 
coarsening methods. Another advantage of our algo-
rithm is that it uses the CVT techniques, which enable 
us to output meshes with high quality. As shown in 
Table 1, all the minimum angles of the triangles in our 
output mesh were above 15° and the average angles 
were above 45°. Although the input mesh had a very 
low quality (Figs.6, 8 and 10), the output mesh from 
our algorithm was still good. The post-process plays a 
key role in our algorithm, enabling us to output 
meshes with better quality (Figs.9a~9f). In Figs.9a, 9c 
and 9e, we show the output meshes with the 
post-process. In Figs.9b, 9d and 9f, we show the 
output meshes without the post-process. It is clear that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Our results obtained for reference models (r=2) 

Figure Model With 
post-process Nvo Nvc αmin (°) αav (°) P<30° (%) Qmin Qav d (%)

6 Rock Arm  66 372  0.0001 33.63 11.00 0.0018 0.61  
7 Rock Arm Yes 66 372 8000 16.7300 46.25 0.70 0.3300 0.83 0.8 
8 Stanford Bunny  54 664  0.0011 32.38 14.00 0.0034 0.60  
9a Stanford Bunny Yes 54 664 3000 17.7600 46.40 0.70 0.3328 0.83 0.9 
9b Stanford Bunny No 54 664 3000 8.1290 43.49 3.10 0.1506 0.79 0.9 
9c Stanford Bunny Yes 54 664 5000 15.8700 46.21 0.75 0.2522 0.82 0.7 
9d Stanford Bunny No 54 664 5000 6.8790 42.52 3.60 0.1074 0.78 0.7 
9e Stanford Bunny Yes 54 664 8000 17.4300 45.87 0.82 0.2756 0.82 0.5 
9f Stanford Bunny No 54 664 8000 0.6764 40.81 5.36 0.0136 0.75 0.5 
10 Igea Artifact  184 494  0.0250 31.85 14.38 0.0007 0.59  
11 Igea Artifact No 184 494 10 000 17.8100 46.68 0.50 0.3225 0.83 0.4 

Nvo: number of vertices in the original mesh; Nvc: number of vertices in the coarsened mesh; αmin: the minimal angle of the triangles; αav: the 
average minimal angle; P<30°: the percentage of angles which are less than 30°; Qmin: minimal shape quality; Qav: average shape quality; d: 
Hausdorff distance measured by the Metro tool 
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the quality of output meshes was improved when the 
post-process was included. The processing time was 
measured on a low-end AT/AT compatible PC with 
AMD Sempron® CPU 1.66 GHz and 1 GB RAM. It 
took about 1~3 min for the above models to run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows a comparison among the results 
using our method, the well-known QEM method and 
the method proposed by Valette et al.(2005). From 
the experimental results, we can see that while the 
quality of our output meshes and those of (Valette et 
al., 2005) is better than the quality of those from 
QEM, the Hausdorff distances are greater. We think 
the main reason is that QEM, which is based on 
minimal distances, is primarily concerned with ap-
proximation error and preserving topology, but our 
method and that of (Valette et al., 2005), which are 
based on CVTs, emphasize the quality of triangles. 
Experimentally, the approximation errors of our re-
sults are small enough and can be acceptable. From 
our experimental results, we can also see that most 
qualities of our method’s output meshes are better 
than those of the method of (Valette et al., 2005). Our 
Hausdorff distances are smaller except in the 
Laurent’s Hand model. 

Table 2  Comparison of the results from using the quadric error metric (QEM), the method of (Valette et al., 2005) and 
our proposed method (r=0.5) 

Model Method Nvo Nvc αmin (°) αav (°) P<30° (%) Qmin Qav d (%) Time (s)
QEM 134 345 2233 1.1800 35.19 32.77 0.0220 0.66 0.3 14.40
Valette et al., 2005 134 345 2235 21.7100 47.15 0.47 0.3900 0.84 0.8 79.70Venus 
Proposed 134 345 2235 20.0400 49.86 0.36 0.4390 0.88 0.6 80.88
QEM 34 839 5000 1.0750 34.53 35.53 0.0220 0.65 0.2 3.20
Valette et al., 2005 34 839 5000 3.7900 43.38 6.59 0.0650 0.79 0.9 29.70Stanford Bunny 
Proposed 34 839 5000 2.4150 48.96 1.00 0.0380 0.86 0.6 30.90
QEM 50 085 5000 0.7106 33.96 37.23 0.0130 0.64 0.2 3.80
Valette et al., 2005 50 085 5000 9.5390 43.58 6.26 0.2340 0.79 0.3 41.40Laurent’s Hand 
Proposed 50 085 5000 6.8350 47.19 1.00 0.1040 0.84 0.5 39.77

Nvo: number of vertices in the original mesh; Nvc: number of vertices in the coarsened mesh; αmin: the minimal angle of the triangles; αav: the 
average minimal angle; P<30°: the percentage of angles which are less than 30°; Qmin: minimal shape quality; Qav: average shape quality; d: 
Hausdorff distance measured by the Metro tool 

Fig.8  Stanford Bunny 
(a) The input mesh (shown by a flat shaded mode); (b) An
enlarged picture of the selected region (shown by a Gouraud 
shaded mode). The original model is available at http:// 
graphics.stanford.edu/data/3Dscanrep/ 

(a)                                       (b) 
Fig.6  Rocker Arm 

(a) The input mesh (shown by a flat shaded mode); (b) An
enlarged picture of the selected region (shown by a Gouraud
shaded mode). The original model is available at http://www.
cyberware.com/samples/index.html. We used the tool ‘Po-
lyMender’ to process the original mesh and obtained the input
mesh. The PolyMender software is available at http://www.
cs.wustl.edu/~taoju/index.htm#soft. We also used this tool to
process the following Stanford Bunny and Igea Artifact, to
obtain our input mesh 

(a)                                       (b) 

Fig.7  Rocker Arm with 8000 points and the output mesh
by our algorithm (r=2) 
(a) Flat shaded mode; (b) Gouraud shaded mode 

(a)                                           (b) 
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(a)                                                                                                 (b) 

(c)                                                                                                 (d) 

(e)                                                                                                 (f) 

Fig.9  Stanford Bunny with different numbers of points and the output mesh using our algorithm or without
post-process (r=2) 
In each subfigure, the left is the flat shaded mode and the right is the Gouraud shaded mode. (a), (b): With 3000 points; (c),
(d): With 5000 points; (e), (f): With 8000 points. (a), (c), (e): Using our algorithm; (b), (d), (f): Without post-process 

(a)                                        (b) 

Fig.10  Igea Artifact 
(a) The input mesh (shown in a flat shaded mode); (b) An
enlarged picture of the selected region (shown by a Gouraud
shaded mode). The original model is available at http://www.
cyberware.com/samples/index.html 

(a)                                         (b) 

Fig.11  Igea Artifact with 10 000 points and the output 
mesh without post-process (r=2) 
(a) Flat shaded mode; (b) Gouraud shaded mode 
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CONCLUSION 
 

In this paper we present an efficient algorithm 
for adaptive mesh coarsening, which is suitable for 
smoothing meshes with arbitrary topology. Objective 
criteria show that the output meshes have good quality. 
Using the adaptive subdivision operator, the algo-
rithm produces a mesh reflecting the curvature of the 
original mesh. Intuitively, large curved regions will 
contain small triangles and a dense vertex sampling, 
and vice versa. In the ideal case, our method produces 
a mesh in which the mass of each triangle is almost 
equal; i.e., the mass on the mesh is distributed uni-
formly. This helps us to simplify the energy term in 
the face clustering algorithm based on CVTs. In fu-
ture work, we plan to extend the method to deal with 
meshes with boundaries or sharp features. 
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