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Abstract 2D Fragment assembly is an important research
topic in computer vision and pattern recognition, and has
a wide range of applications such as relic restoration and
remote sensing image processing. The key to this problem
lies in utilizing contour features or visual cues to find the
optimal partial matching. Considering that previous algo-
rithms areweak in predicting the bestmatching configuration
of two neighboring fragments, we suggest using the earth
mover’s distance, based on length/property correspondence,
to measure the similarity, which potentially matches a point
on the first contour to a desirable destination point on the
second contour. We further propose a greedy algorithm for
2D fragment assembly by repeatedly assembling two neigh-
boring fragments into a composite one. Experimental results
on map-piece assembly and relic restoration show that our
algorithm runs fast, is insensitive to noise, and provides a
novel solution to the fragment assembly problem.
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1 Introduction

Fragment assembly [21,33,36] based on contour features or
chromatic cues is an important research topic in computer
vision and pattern recognition [10,25,40,47]. It is of practical
use in relic restoration, puzzle assembly [16,19] and remote
sensing imageprocessing [29]. In both 2Dand3Dcases,most
of conventional algorithms [5,6,12,13,24,34,42] require the
following steps: (1) preprocessing, (2) feature extraction, (3)
computing similarity matrix and (4) assembling fragments.
Generally, two kinds of information on the contours, includ-
ing geometric features (curvatures, torsions, normals) and
chromatic cues (texture), are helpful in inferring the assem-
bly configuration.

Without doubt, the underlying measure defining the sim-
ilarity between neighboring fragments is central to obtain a
meaningful assembly configuration. It is observed that when
the common boundary is maximized w.r.t. a certain align-
ment, its length provides a natural measure of similarity.
Mathematically speaking, the similarity between neighbor-
ing fragments can be defined to the maximum possible
Lebesgue measure of the common contour. Suppose that l1
is the subsegment of the first contour defining the common
contour and l2 is the counterpart of l1 given by the second
contour. Ideally, l1 and l2 have no difference except going in
the opposite direction. Considering that the input fragments
often have noisy boundaries, it is reasonable to take l1 and l2
as the common boundary if some specified distance between
l1 and l2 is less than a given tolerance.

To our best knowledge, most of the known algorithms
compute pointwise distances to measure the difference
between two curved segments. For example, the Hausdorff
distance was employed in [3,4] to find the two points that
maximize the deviation, while the Fréchet distance [2,9,
14,28] was used to find the maximum distance between

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-016-1303-3&domain=pdf


M. Zhang et al.

p1

p
2

q

q

a

b

1

2

Fig. 1 The earthmover’s distance based on length/property correspon-
dence

corresponding points up to some curve re-parametrization.
However, these approaches do not take into account the prop-
erty (e.g., curvatures or visual cues) correspondence and
are thus weak in predicting a good matching configuration
between two fragments.

As Fig. 1 shows, p̃1q1 and p̃2q2 are two given curves. To
establish a desirable correspondence between p̃1q1 and p̃2q2,
we need to consider at least two aspects in the following:

– Length correspondence If a ∈ p̃1q1 is mapped to b ∈
p̃2q2, then it would be better if p̃1a and˜p2b are as equal
as possible in length.

– Property correspondence If a ∈ p̃1q1 is mapped to b ∈
p̃2q2, then it would be better if a and b have similar
properties.

In this paper, we suggest using the well known earth
mover’s distance (EMD) [1,20,37–39,44] to measure the
overall difference between two curved segments. Taking
Fig. 1 as an example, we define the cost for moving a unit
amount of sand from a to b as follows:

Cost(a, b) = λ1 | ‖̃p1a‖ − ‖˜p2b‖ |
+ λ2 | Property(a) − Property(b) |, (1)

where the first term measures the length correspondence, the
second term measures the property correspondence, and λ1
and λ2 are two parameters that make a balance between the
two terms. With the help of these preparations, the overall
difference between the two curved segments can be defined
to the lowestmoving cost given by the optimal transport plan.
By finding the the maximum possible Lebesgue measure of
the common contourswhose EMD is less than a given thresh-
old, we are able to find the best configuration between two
neighboring fragments. Our contributions are threefold:

1. We suggest using the earth mover’s distance, based on
length/property correspondence, to measure the simi-
larity between two neighboring fragments. Technically,
it can be formulated as a linear programming (LP)
problem.

2. Considering that the coherence of matching configura-
tions, we suggest a set of techniques to speed up the
computation.

3. We illustrate its effectiveness by demonstrating its uses
in puzzle assembly and relic restoration.

2 Related work

At least two topics, i.e., curve matching and fragment assem-
bly, are closely related to our research work in this paper. We
summarize the related work in the following.
Curve matching This is an important computational task in
research domains such as reconstruction of archeological
fragments, forensic investigation, measurement of melodic
similarity, and model-based object recognition [29]. As
Buchin et al. [9] pointed out, curve matching is actually to
maximize the total length of subcurves that are close to each
other, where closeness is measured by some 2D distance
measure, e.g., Fréchet distance [2,9,14,28] and Hausdorff
distance [3,4].

Rather than matching two curves globally, we are more
interested in the partial curve matching problem [26], i.e.,
given a threshold δ, we wish to find the best matching config-
uration such that the largest possible fractions of two input
curves are matched within distance δ. For such a purpose,
James [23] suggested capturing the locations of important
features which may represent local behavior and then equat-
ing the “moments” of a given set of curves. Huang and
Cohen [22] used a new class of weighted B-spline curve
moments to handle the affine transformation and/or occlu-
sion between the curves. Porrill and Pollard [35] discussed
epipolar geometry-based curve matching in camera calibra-
tion. Cui et al. [11] proposed a curve matching framework
based on a scale-invariant signature.

It is worth noting that in this paper that we consider the
length correspondence and property correspondence at the
same time when establishing the transport plan between two
input curve segments, and then use EMD to evaluate the
similarity between them. Our approach is invariant to rigid
transformations, insensitive to noise and able to support mul-
tiple property functions at the same time.
Fragment assembly The assembly problem discussed in this
paper is quite similar to, but different from the conven-
tional puzzle assembly problem [31,41] where the pieces
are often symmetric and regular. We assume that the input
fragments are of irregular shapes and thus the computation
has to depend on shape cues. To assemble them together,
it is a common practice to use the greedy assembly strat-
egy [8,17,18,30,32,46,48]. For example, da Gama Leito
and Stolfi [17] suggested looking for initial matchings at the
coarsest possible scale and then repeatedly selecting themost
promising pairs to re-match them at the next finer scale. In
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this way, they asymptotically reduced the matching cost until
the assembly was complete.

In this paper,we also use a greedy algorithm to accomplish
the assembly task—fragments that have larger similarity are
given higher priority during the assembly process. The key
speedup technique different from the conventional greedy
scheme is: after fragment #A and fragment #B are combined
into a new fragment #C, the properties of #C are updated at
only a little cost using those of #A and #B.

3 Partial EMD-based similarity measure

We let

p(i)
1 , p(i)

2 , . . . , p(i)
mi

constitute a closed polygonal curve bounding the i-th frag-
ment, and

w
(i)
1 , w

(i)
2 , . . . , w(i)

mi

be the correspondingweighting scheme. Typically,w(i)
j is the

length of the influential interval by p(i)
j . We use the vector

Q(i)
1 ,Q(i)

2 , . . . ,Q(i)
mi

,

to denote the geometric or chromatic properties of p(i)
j , j =

1, 2, . . . ,mi .

Given two fragments shown in Fig. 2, we discuss the
definition of EMD-based similarity between them. For con-
venience of formulation, we assume that the orientations of
the two contours are different from each other. Now, we shall
study whether the curved segment from p(1)

j1
to p(1)

j1+k1
can

be matched with the curved segment from p(2)
j2

to p(2)
j2+k2

.

First, to guarantee that the information (length and prop-

erties) of
˜

p(1)
j1

p(1)
j1+k1

can be completely transported to

˜

p(2)
j2

p(2)
j2+k2

, we should normalize the weights such that the

Fig. 2 EMD-based similarity

total weights for
˜

p(1)
j1

p(1)
j1+k1

and
˜

p(2)
j2

p(2)
j2+k2

are exactly 1,

even if
˜

p(1)
j1

p(1)
j1+k1

and
˜

p(2)
j2

p(2)
j2+k2

are not equal in length. In
the following, we assume that

w
(1)
j1

+ w
(1)
j1+1 + · · · + w

(1)
j1+k1

= 1

and

w
(2)
j2

+ w
(2)
j2+1 + · · · + w

(2)
j2+k2

= 1.

Now, we assume the information of a mass δ j (1) j (2) be

moved from the vertex p(1)
j (1)

to the vertex p(2)
j (2)

, whose cost
is

Cost j (1) j (2) = δ j (1) j (2) ∗ (λ1 ∗ |l j (1) − l j (2) |
+ λ2 ∗ |Q j (1) − Q j (2) |),

where l j (1) and l j (2) are, respectively, the lengths from the

starting points to p(1)
j (1)

and p(2)
j (2)

. Our goal is to find some
transport plan so as to minimize the following cost function:

Cost( j1, k1, j2, k2) = min
δ j(1) j(2)

j1+k1∑

j (1)= j1

j2+k2∑

j (2)= j2

Cost j (1) j (2) ,

subject to the following constraints:

∑

j (2)

δ j (1) j (2) = w
(1)
j (1)

,

∑

j (1)

δ j (1) j (2) = w
(2)
j (2)

and

δ j (1) j (2) ≥ 0,

where j (1) = j1, j1 + 1, . . . , j1 + k1, j (2) = j2, j2 +
1, . . . , j2 + k2 and δ j (1) j (2) define the transport plan.

Recall that we have normalized the total lengths of the
respective curved segments to be one in the very beginning.
Therefore, we take

Cost∗( j1, k1, j2, k2) = Cost( j1, k1, j2, k2)

× max

(∥∥∥∥
˜p(1)
j1

p(1)
j1+k1

∥∥∥∥ ,

∥∥∥∥
˜p(2)
j2

p(2)
j2+k2

∥∥∥∥

)

as the real EMDbetween
˜

p(1)
j1

p(1)
j1+k1

and
˜

p(2)
j2

p(2)
j2+k2

.Finally,
the overall similarity between the two input fragments can
be defined to be
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Fig. 3 Algorithmic pipeline: we first extract the properties (b) from
the input fragments (a) and then find the optimal partial matching (c)
such that they can be assembled (d). Note that in b, the colored curves,

respectively, show the change of the three color components (R, G, B)
along the boundary, while the black curve is the curvature plot

L = max
j1,k1, j2,k2

{min

(∥∥∥∥
˜

p(1)
j1

p(1)
j1+k1

∥∥∥∥ ,

∥∥∥∥
˜

p(2)
j2

p(2)
j2+k2

∥∥∥∥

)

| Cost∗( j1, k1, j2, jk2) ≤ ε}, (2)

where ε is the user-specified tolerance to define the maxi-
mum allowable EMD when matching two curved segments.
That is to say, if the EMD is less than ε, we can say that
the two input curved segments are well matched. ε is exper-
imentally set to 0.3 % of the total length of the input closed
curves.

4 Fragment assembly

In this section, we first show the whole algorithmic pipeline
of the fragment assembly in Fig. 3, followed by the key steps
that are detailed in Sects. 4.1–4.4. The first step is to pre-
process the input fragments (see Fig. 3a), including boundary
smoothing and (geometric and chromatic) feature extraction
(see Fig. 3b). Next, we propose to find the optimal matching
(see Fig. 3c) based on the similarity measure discussed in
Sect. 3. After that, we further infer the rigid transformation
matrix so that the input fragments can be well aligned (see
Fig. 3d). Finally in Sect. 4.4, we suggest a greedy assembly
scheme to assemble multiple input fragments, i.e., maintain-
ing a priority queue throughout the algorithm so that the top
priority fragment pair can be assembled during each step.

4.1 Preprocessing

During the preprocessing step, one key task is to trans-
form the boundary into vectorized representation, typically
a closed polygonal curve without noise. First, we use a
quadtree-based method proposed by Wang et al. [43] to
reconstruct a 2D curve from a set of unorganized points,
possibly with a high level of noise and finally produce a
desirable contour while preserving geometric features. Next,
we further simplify the contours and remove those vertices
without which the Hausdorff distance between the original
polyline and the simplified version is still within a given
tolerance. Here, we take the tolerance to be 0.1 % of the
curve length. The simplification operation [15] is for the
purpose of accelerating computation. After that, we use the
multiscale curvature method proposed by Liu et al. [27] to
estimate the curvatures of a polygonal curve. The significant
advantage of this method is the ability to yield stable esti-
mation even under severe noise, since the authors considered
statistics of the extreme points of the height functions com-
puted over all directions. After that, we can easily obtain
the curvature plot with regard to the arc-length parameter;
see Fig. 4. The chromatic cues along the boundary, typ-
ically consisting of the R, G, B components, can also be
encoded by plots. In this way, we finish the property extrac-
tion task that is central to the similarity estimation between
fragments.
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Fig. 4 Curvature extraction. The segments marked in red are the
common boundary computed by EMD. a Fragments. b Contours.
c Curvature plots

4.2 Similarity evaluation

Oncewe obtain the curvature plots of the fragments, we come
to estimate the similarity between two fragments based on
the EMD formulation [see Eq. (2)], where the underlying
metric is defined as Eq. (1).

The key is to find a proper quadruple ( j1, k1, j2, k2)
corresponding to the longest candidate common boundary

˜

p(1)
j1

p(1)
j1+k1

(resp.
˜

p(2)
j2

p(2)
j2+k2

) with its EMD being equal to or
less than the given tolerance. A naïve method is to find the
best matching among all the possible quadruples, which is
very time consuming. Therefore, we propose a pair of tech-
niques as follows:

– In Eq. (1), increasing λ2 tends to align features between
the two given fragments. In this way, it enables us to
capture the quite limited number of “moments” that the
fragments align. After that, it is sufficient to consider
a few possibilities of matching configurations and then
enlarge or shrink the common boundary while keeping
the feature points aligned.

– The EMD cost changes continuously with regard to the
four indices of the quadruple. When we intend to enlarge
the common boundary, it is better to change the index
component of the quadruple that increases the EMD
cost most inconspicuously; when we shrink the common
boundary, it is better to change the index component of
the quadruple that reduces the EMD cost most signifi-
cantly.

In implementation, we set λ1 to 0.1 and λ2 to 0.9 when cap-
turing alignment moments, and set λ1 to 0.5 and λ2 to 0.5
when computing the real EMD cost.

4.3 Alignment matrix

After we find the longest common boundary between the two
fragments,we also need to compute an alignmentmatrix such
that they are well placed along the same boundary; see the
red curves in Fig. 3c. Now, we compute the alignment by
solving a linear system.

Suppose that (xi , yi ) and (x ′
i , y

′
i ) are two groups of points

that need to be aligned. It is reasonable to assume that a rigid
transform is able to match them well. Therefore, we have

{
x

′
i = axi + cyi + t1,

y
′
i = bxi + dyi + t2,

(3)

for i = 1, 2, . . . , k. Generally, the linear equation sys-
tem (3) is overconstrained whose least square solution
actually defines a matrix that is able to align the two frag-
ments; see Fig. 3d for illustration.

4.4 Assembly scheme

To assemble a group of fragments, the first step is to compute
a similarity matrix that encodes the similarity between any
pair of two fragments.We then use a greedy scheme to assem-
ble all the fragments. Figure 5 illustrates how three pieces of
theMona Lisa picture are assembled step by step. During the
first step, Fragment #1 and Fragment #3 are matched since
they have a long common boundary according to the 3 × 3
similarity matrix. Therefore, they are assembled into Frag-
ment #1, 3. Let l12 be the length of the common boundary
between Fragment #1 and Fragment #2, and l32 be the com-
mon boundary between Fragment #3 and Fragment #2. Then
the length of the common boundary between Fragment #1,
3 and Fragment #2 is updated to l12 + l32. Note that at this
moment, the similarity matrix is 2×2. Repeat such a process
until all fragments are assembled together; see Fig. 5.

5 Experimental results

We implemented and experimented with our algorithm on a
computer with a 64-bit version of Win8 system, a 2.4 GHz
Intel(R) Core(TM) i7-5500U CPU and 6 Gb memory. The
coding language was C++.

5.1 Performance

We use the fragments in Fig. 4 to test the performance with
regard to the number of vertices on the boundary. For such
a purpose, we discretize both the boundaries into 1K, 2K,
. . ., 35K vertices and run our algorithm. The timing plots
are available in Fig 6, where we use T1 to denote the time
cost (in seconds) for finding the longest common boundary
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Fig. 5 Greedy algorithmic scheme: the input fragments are assembled
together according to the priority of similarity. During the first step,
Fragment #1 and Fragment #3 are matched and the properties of the
newly generated piece Fragment #1, 3 are updated immediately. After

that, Fragment #1, 3 and Fragment #2 are then assembled, resulting in
another new piece Fragment #1, 2, 3. a Fragment #1. b Fragment #2. c
Fragment #3. d Fragment #1,3. e Fragment #1,3,2

Fig. 6 Performance plot: T1 denotes the time cost (in seconds) for
finding the longest common boundary and T2 denotes it for computing
the alignment matrix

[solving Eq. (2)] and T2 denotes that for shape alignment
[solving Eq. (3)]. In practice, the boundaries have hundreds
to thousands of vertices and therefore 5 s suffices for finding
the best matching between them.

Fig. 7 Performance comparison with the Fréchet distance-based
method

To compare the performance with the Fréchet distance-
basedmethod,wealso apply theFréchet distance to similarity
computation. Similarly, the Fréchet distance-based similarity
is defined to the length of the longest common boundary
under condition that the Fréchet distance between them is
within the same tolerance. Figure 7 shows the performance
contrast, from which we can see that our algorithm has a
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conspicuous advantage. This is because our algorithm is able
to quickly capture the key moments of candidate matchings,
which is central to reduce the timing cost.

5.2 Robustness

Generally, the input fragments are digitalized photos. The
extracted contours inevitably have noise. Therefore, a robust
algorithm is desirable to deal with the practical issues. Recall
that we adopt a robust curvature estimation approach that
facilitates us to accurately capture the dominant geomet-
ric properties (curvatures and (R, G, B) components) of the
contours, and theEMD-based technique is able tofind adesir-
able matching configuration. Both of them are useful for the
robustness of our algorithm. As Fig. 8 shows, even when the
input fragments have noise along the boundaries, our algo-
rithm can still find an accurate matching, but the Fréchet
distance-based methods cannot. In fact, Fréchet distance,
in its nature, depends on the one-to-one correspondence
between two objects of interest, which is pretty sensitive to
noise.

To quantitatively measure the accuracy of our algorithm
as well as the Fréchet distance-based method, we use the
respective relative errors with regard to the ground truth. Let
L be the length of the real common boundary, and LEMD

and LFréchet be respectively the similarities computed by
our algorithm and the Fréchet distance-based method. Then

Fig. 8 When the input fragments have noise along boundaries, our
algorithm can still find an accurate matching configuration, but the
Fréchet distance-based methods cannot. a Region #1. b Region #2.
c Our method. d Fréchet distance

Table 1 Matching accuracy

Fragments Fréchet distance (%) Our algorithm (%)

Figure 8 2.64 0.92

Figure 11_1 1.14 0.33

Figure 11_2 1.06 0.28

Figure 11_3 1.92 0.52

Figure 11_4 1.74 0.45

Figure 11_5 2.35 0.78

Tomeasure the accuracyof our algorithmaswell as theFréchet distance-
based method, we use the respective relative errors with regard to the
ground truth (Note that the exact common boundary is known)

we use |LEMD−L|
L and |LFréchet−L|

L to measure their accuracies
respectively. The detailed statistics are shown in Table 1.
Experimentally, we found that the Fréchet distance-based
method often captures a common segment that is shorter than
the real common boundary. By contrast, our algorithm has
better accuracy.

6 Applications

In this section, we demonstrate the uses of our algorithm to
two applications, map-piece assembly and relic restoration.
We finally point out a failure case as well.

6.1 Fragment assembly

Jigsaw puzzle [45] is one popular game well known all over
the world. Generally, the constituent pieces usually have not
only geometrical shape cues, but also visual cues such as
texture and color. (Note that regular pieces with repeated
visual patterns are not in our research scope.) Suppose that
a Chinese map puzzle (Mainland China) requires users to
assemble totally 26 individual pieces into a complete map,
as shown in Fig. 9. Based on the discussion in Sect. 4, we can
extract the contours first, analyze the similarity between any
pair of pieces, and finally assemble them into one complete
map using a greedy algorithmic scheme. The input regions
are often represented by low-resolution images with inaccu-
rate boundaries, which is amajor challenge to the assembling
algorithm. In spite of this, our algorithm is able to accomplish
the complicated task. Figure 9 demonstrates the final assem-
bled result. In implementation, the 26 regions have 34731
vertices totally and the required timing cost is 12.4 s.

Previous research works show that when the number of
pieces becomes large, e.g., larger than 10, the assembling
task will be very hard. In Fig. 10, we provide the ground truth
of the jigsaw puzzle, the assembling result by ourmethod and
that of the critical point-based approach [45]. Taking Fig. 10c
as an example, the critical point-based approach works well
at the very beginning except that the matching configurations
are not so accurate. When it is the turn is to assemble the yel-
low piece, overlapping cannot be avoided, which will cause a
failure. In other words, even if their approach assembles the
pieces in correct order, it becomes more and more difficult to
find a desirable matching configuration due to the inaccurate
matching configurations before. As a contrast, our method is
able to give a desirable matching configuration, but relaxes
the accuracy requirement ofmatching and thus can be applied
to the scenario of quite a lot of pieces.

To further show the robustness of our algorithm, we per-
formed more experiments. Figure 11 shows five examples,
each of which is a subregion of the world map. The left col-
umn shows the input fragments, the middle column shows
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Fig. 9 Chinese map (Mainland China): when the input is a collection of separate regions (a), we can extract their contours (b) and then assemble
them into a complete map based on geometric features (c)

Fig. 10 The result of the jigsaw puzzle: a the assembling ground truth, b the result of the jigsaw puzzle with our method, c the result of the jigsaw
puzzle with isthmus critical points

the similarity matrix, and the right column shows the assem-
bled map. Note that red means that the common boundary is
long, as opposed to blue.

Experimental results also show that the key to obtain a
meaningful assembly lies in the similarity estimation. The
advantage of our assembling algorithm comes from two
aspects: (1) we adopt a robust curvature estimation approach
that enables us to accurately capture the salient geometric
properties and (2) the EMD technique takes into account the
length correspondence and property correspondence at the
same time.

6.2 Relic restoration

Cultural heritages are in urgent need of conservation and
restoration. On one hand, we need to take positive measures
to increase their life spans and avoid deterioration. On the
other hand, digitalized restoration is also an interesting strat-
egy [7]. Suppose that an ancient plate is broken into pieces, as
Fig. 12 shows. Before archeologists assemble them by hand,
we can pre-assemble the image-based constituents. First, we
extract the contour of each piece (see Fig. 12b). Second, we
find a reasonable arrangement so that all pieces are assem-
bled together (see Fig. 12c). Finally, a composite image is

generated (see Fig. 12d). For this example, the required time
cost (boundary extraction included) is 5.3 s. It greatly relieves
archeologists from tedious labour.

6.3 Failure case

However, we must point out that there are some failure cases
that we cannot deal with yet. The algorithm, in its current
form, assumes that the input pieces are of irregular shape,
which actually implies the uniqueness of the best matching
configuration. In the case where the fragments have symmet-
ric structures, our algorithm possibly fails to give a global
matching solution. For instance, if the common boundary
is symmetric as Fig. 13 shows, the matching configurations
between the two pieces are not unique—a wrong matching
guess will lead to a failure in assembling successive frag-
ments, since our assembling algorithm is of a greedy style.

7 Conclusions and future work

In this paper, we use partial EMD to characterize the simi-
larity between two fragments and further propose a greedy
strategy for fragment assembly. The length correspondence
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Fig. 11 More map assembling examples. a Inputs. b Similarity matrices. c Assembly results
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Fig. 12 Relic restoration: a plate fragments, b contour extraction, c contour matching, and d restored plate

1 2

3

1 2

3

1 2

3

(c)(b)(a)

Fig. 13 Failure case: When the common boundary between two fragments (a) has symmetric structures that are generally generated artificially,
the assembly plans may not be unique; see b and c. a Input, b Assembly plan #1 and, c Assembly plan #2

and the property correspondence are considered at the same
when defining EMD so that we can find a better matching
configuration than previous algorithms. Experimental results
show that our approach is robust to noise and can be applied
to the scenario of quite a lot of pieces. We believe that the
approach has a great potential in many computer graph-
ics/vision applications.

In future, we will extend our algorithm to 3D fragment
assembly. Also, further speedup techniques need to be devel-
oped.
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