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a b s t r a c t 

3D surface offsetting is a fundamental geometric operation in CAD/CAE/CAM. In this paper, we propose 

a super-linear convergent algorithm to generate a well-triangulated and feature-aligned offset surface 

based on particle system. The key idea is to distribute a set of moveable sites as uniformly as possible 

while keeping these sites at a specified distance away from the base surface throughout the optimization 

process. In order to make the final triangulation align with geometric feature lines, we use the moveable 

sites to predict the potential feature regions, which in turn guide the distribution of moveable sites. Our 

algorithm supports multiple kinds of input surfaces, e.g., triangle meshes, implicit functions, parametric 

surfaces and even point clouds. Compared with existing algorithms on surface offsetting, our algorithm 

has significant advantages in terms of meshing quality, computational performance, topological correct- 

ness and feature alignment. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

An offset surface [1] , also called a parallel surface, consists of all

the points that are at a constant distance d to an input surface. The

computation of surface offsets is a common and fundamental oper-

ation in various applications in CAD/CAE/CAM [2–4] , e.g., hollowed

or shelled solid model generation for rapid prototyping. 

There is a large body of literature on computing offset surfaces.

Existing methods can be roughly divided into three categories de-

pending on the specific representation form of the input surface.

For parametric curves or surfaces, a commonly used approach

[5–7] is to generate parametric offsets first, followed by care-

fully handling tangent discontinuities, cusps and self-intersections.

When the input is a polygonal surface or implicit surface [1,8,9] ,

one has to build a volumetric scalar field with a dense resolution

and then extract the iso-surface at the specified distance. How-

ever, such an approach has at least two disadvantages including

(1) it requires a huge time/space cost since the total number of

voxels is O (1/ ε3 ), where ε is the accuracy tolerance, and (2) the

final offset surface does not have a desirable triangulation quality.
∗ Corresponding author. 

E-mail addresses: chenshuangmin@nbu.edu.cn , csmqq@163.com (S. Chen). 
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inally, it seems that offset surfaces can be obtained by a series

f mesh boolean operations [10] across a sufficiently large number

f spheres centered at the base surface, but experimental results

how that it cannot work well in practice due to the fact that the

eshing quality gets worse and worse after many boolean oper-

tions. This motivates us to develop an easy-to-use tool for gen-

rating a well-triangulated and feature-aligned offset for an input

urface that can be a polygonal surface, a parametric surface, an

mplicit surface, or even a point cloud. 

In this paper, we propose a super-linear convergent algorithm

o generate polygonal offsets. The key idea is to distribute a set of

oveable sites as uniformly as possible while keeping these sites

t a specified distance from the original surface throughout the

ptimization process. Because of the uniform distribution of these

ites, an additional quick step of simply connecting sites is suffi-

ient for producing the final triangle mesh. An example is shown

n Fig. 1 . 

Our main contributions are at least threefold: 

1. Taking the uniformity of sites as the objective function whereas

the specified distance to the base surface as the hard con-

straint, we formulate the offsetting problem using particle sys-

tem, which can be efficiently solved due to the closed-form for-

mula of the gradients of the objective function. 

http://dx.doi.org/10.1016/j.cag.2017.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.07.003&domain=pdf
mailto:chenshuangmin@nbu.edu.cn
mailto:csmqq@163.com
http://dx.doi.org/10.1016/j.cag.2017.07.003
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Fig. 1. Our algorithm is able to produce a feature-aligned and high-quality offset 

surface (b) for the input surface (a); See the close-up views. 
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(a) Input (b) CVT (c) Particle System

Fig. 2. For 200 input sites (a), CVT requires about 0.45 seconds and 91 iterations 

to get the distribution in˜(b), while the particle system requires only 0.01 seconds 

and 48 iterations to achieve (c). Note that the distribution in (c) is sufficient for the 

triangulation purpose in practice. 
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2. Throughout the optimization process, we use the moveable

sites to predict the potential feature regions of the final off-

set surface, which is in turn enforced on the objective func-

tion to guide the distribution of the moveable sites, leading to

a feature-aligned triangulation. 

3. The algorithm framework is powerful and supports various

kinds of input surfaces, including polygonal surfaces, parametric

surfaces, implicit surfaces and even point clouds. 

. Related work 

At least three kinds of works are related to the theme of this

aper, including surface offsetting, particle system, and remeshing.

.1. Surface offsetting 

Existing offset algorithms assume that the input surface has a

pecific representation form. When the input surface has a para-

etric form, it is quite often to represent the offset surface as a

arametric form as well. Existing algorithms of this kind focus on

eeking a polynomial/rational alternative to approximate the exact

arametric form, and handling tangent discontinuities, cusps and

elf-intersections. For example, Filip et al. [11] developed a theorem

n approximation accuracy using the bounds of second derivatives

f the original curves and surfaces. Piegl and Tiller [12] proposed to

pproximate the offset surface with the fewest number of control

oints. Kumar et al. [13] developed a set of trimming techniques to

andle invalid local intersections. The above-mentioned methods,

hose input and output are both in parametric form, are different

rom the goal in this paper, i.e., generating a high-quality polygonal

ffset surface. 

When the input is a polygonal or implicit surface, one can build

 volumetric scalar field to encode signed distances to the base

urface and then extract the offset surface based on the marching

ube technique [8,14,15] . However, the resolution of voxelization is

ard to set. Coarse voxelization may lead to a topologically incor-

ect reconstructed offset surface but an over-dense voxelization re-

uires a huge time/space cost. What’s important is that it cannot

roduce a high-quality triangle mesh to represent the offset sur-

ace. 

Theoretically speaking, mesh boolean operations [10] seem to

e able to compute the offsets individually for each face, edge, and

ertex and then return the union of the basic offset elements as

he final offset surface. However, experimental results show that

esh boolean operations cannot work well in practice. First, these

asic offset elements highly overlap, causing a notorious difficulty

n unionizing a large number of such objects. Second, performing
esh boolean operations across a large number of objects is inef-

cient and cannot guarantee a desirable meshing quality. Similarly,

oint based reconstruction algorithms [9,16] , based on point shift-

ng and filtering operations, cannot guarantee the meshing quality

ither. 

.2. Particle system vs. CVT 

There are many application occasions where we need to dis-

ribute a set of sites as uniformly as possible. Both centroidal

oronoi tessellations (CVT) [17,18] and particle systems [19–22] can

erve for this purpose. Du and Wang [23] introduced the Lloyd

ethod to compute CVT and apply it into optimal tetrahedral mesh

eneration, while Liu et al. [24] proposed a quasi-Newton method

o compute CVT and demonstrated the extraordinary ability in sur-

ace remeshing. Particle system, by contrast, has a sound basis in

hysics and can serve for the same purpose by minimizing the

lobal inter-particle forces to make the particles (sites or vertices)

eep the optimal balanced state, leading to a collection of uni-

ormly distributed particles. Generally speaking, particle system is

ble to generate a desirable site distribution with less computa-

ional cost [25] in contrast to CVT. As Fig. 2 shows, particle system

uns about many times faster than CVT in producing a uniform

istribution of almost the same quality. Therefore, in this paper,

e adopt particle system to iteratively optimize the distribution of

ites (serving as vertices of the final offset surface). 

.3. Remeshing 

A wide range of applications require meshes with high-

uality triangulation to facilitate numerical computation, and thus

emeshing is an important research topic in computer graphics.

oughly speaking, there are three kinds of remeshing depend-

ng on various purposes. The first kind targets at uniform tri-

ngulation, which seeks for an as-uniform-as-possible vertex dis-

ribution [24] . The second kind of remeshing algorithms aims at

sotropic or anisotropic triangulation assuming that the base sur-

ace is equipped with a density function or an anisotropic metric

o encode the underlying distance. For example, Chen et al. [26] de-

eloped an isotropic remeshing method based on constrained cen-

roidal Delaunay mesh(CCDM), while Zhong et al. [27] introduced a

article-based approach for anisotropic surface meshing. The third

ind is to align triangulation with geometric features. For example,

ai et al. [28] presented an algorithm which turns an unstructured

riangle mesh into a quad dominant mesh with mesh edges well

ligned to the principal directions of the underlying surface. 

. Problem formulation 

.1. Conventional formulation 

Suppose that the input surface is closed and orientable, and

as a parametric form S = S(u, v ) , (u, v ) ∈ � ⊂ R 

2 , for this mo-
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Fig. 3. In order to compute the offset surface of (a), we predict the feature regions (b) of the potential offset surface using the moveable sites. The feature regions are able 

to trap the nearby sites into feature lines and finally lead to a feature-aligned triangulation (c), which is significantly different from the uniform triangulation (d). 
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ment. Let n (u, v ) be the unit normal vector at each point

(x (u, v ) , y (u, v ) , z(u, v )) ∈ S. Then the offset surface can be repre-

sented by 

O d (u, v ) = 

{ (
x (u, v ) , y (u, v ) , z(u, v ) 

)
+ d · n (u, v ) 

| (u, v ) ∈ � ⊂ R 

2 

} 

. 

(1)

It offsets the original surface outward if d > 0 and inward other-

wise. However, such a formulation has at least two disadvantages.

First, there may be redundant parts and an additional trimming

operation is required. To our knowledge, the trimming operation

is tedious and highly non-trivial. Second, it only supports a para-

metric surface as the input. Therefore, a better formulation of this

problem is badly needed. 

3.2. Particle system based formulation 

Suppose that there is a collection of moveable sites X = { x i } N i =1 
to serve as the vertices of the final polygonal offset surface. On the

one hand, we hope that X = { x i } N i =1 
is as uniform as possible. This

can be achieved by minimizing the following energy function: 

E(X ) = 

n ∑ 

i 

n ∑ 

j 

e −
‖ x i −x j ‖ 2 

4 σ2 , (2)

where σ , called the kernel width, is used to adjust the influence

region for each site. On the other hand, we have to set a hard con-

straint that each x i must be lying on the offset surface, i.e., 

‖ x i − x 

S 
i ‖ = d, i = 1 , 2 , . . . , N, (3)

where x S 
i 

is the projection (or closest point) of x i onto the primi-

tive surface S and it can be determined depending on specific sit-

uations. 

3.2.1. Parametric surface 

When the input surface has a parametric form, x S 
i 

can be found

by solving an optimization problem, i.e., seeking for a pair of pa-

rameters (u ∗, v ∗) such that the squared distance 

‖ x i − S(u 

∗, v ∗) ‖ 

2 = 

(
x i − S(u 

∗, v ∗) 
)T (

x i − S(u 

∗, v ∗) 
)

(4)

is minimized. 
.2.2. Implicit surface 

When the input surface is an implicit surface F (x ) = 0 , x S 
i 

can

e found by considering the following constrained optimization

roblem 

Minimize ‖ x 

∗ − x i ‖ 

2 = (x 

∗ − x i ) 
T (x 

∗ − x i ) 
subject to F (x 

∗) = 0 . 
(5)

n implementation, we compute x S 
i 

by an iterative scheme. Let

 

(0) 
i 

:= x i . Then x 
( j+1) 
i 

is updated from x 
( j) 
i 

by repeatedly updating

 

( i ) according to 

 (x 

( j) 
i 

) + 

∂F 

∂x 

| 
x = x ( j) 

i 

·
(

x 

( j+1) 
i 

− x 

( j) 
i 

)
= 0 

nd x 
( j+1) 
i 

− x 
( j) 
i 

is parallel to ∂F 
∂x 

| 
x = x ( j) 

i 

. The iterative algorithm ter-

inates until ‖ x ( j+1) 
i 

− x 
( j) 
i 

‖ < ε. 

.2.3. Polygonal mesh 

When the input is a polygonal mesh, the nearest point x S 
i 

can

e quickly found by bounding box tree techniques, e.g., directly

alling the proximity query package (PQP) [29] . 

.2.4. Point clouds 

Based on the Moving Least Square (MLS) technique [30] , we can

efine a point-set surface approximated locally for a certain neigh-

orhood by a polynomial, and then project the test point x i near

he point set onto this surface, obtaining the projection point x S 
i 
. 

.3. Feature alignment 

Feature alignment is to require edges follow feature lines,

hich is very helpful to many computer graphics occasions es-

ecially mesh quadrangulation. Generally speaking, the quality

f feature alignment depends on the accuracy of feature detec-

ion [31,32] , which is also a difficult problem. For example, Kaloger-

kis et al. [33] proposed robust estimation of smoothed curvature

irections that encode feature lines. 

In this paper, we predict the feature regions of the potential

ffset surface using the moveable sites and further use the feature

egions to guide the moves of the sites. We measure to what de-

ree the site x i is on feature line using the following formula: 

x i = 

∫ 
x ∈ �(x i ) 

‖ n x − n ‖ 

2 d x ∫ 
�(x i ) 

d x 

, (6)
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Fig. 4. The offset surfaces at various distances. When N = 10K, it requires about 2.5 

s for generating the offset surface. 
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Fig. 5. Our algorithm supports multiple kinds of inputs: polygonal surfaces (a), im- 

plicit functions (c), parametric surfaces (e) and point clouds (g). The middle column 

shows the offset surfaces, while the right column shows the angle histograms. 
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here n x is the normal vector at the point x in x i ’s neighborhood

( x i ), while n is the average normal vector of �( x i ). In the discrete

etting, τx i can be also written in the following form: 

x i = 

∑ 

x j ∈ �(x i ) 
‖ n x j − n ‖ 

2 

K 

, (7) 

here K is the number of moveable sites in x i ’s neighborhood

( x i ). Intuitively, τx i represents the disorder of the normal vectors

round x i . It is able to well capture the feature regions of the po-

ential offset surface (see Fig. 3 (b)), in spite of the dynamic sites,

hroughout the optimization process. Then we enforce { τx i } on the

article system as follows. 

(X ) = 

n ∑ 

i 

n ∑ 

j 

e 
−(τ−τx i 

−τx j 
) 

‖ x i −x j ‖ 2 
4 σ2 , (8)

here τ is set to 1.3 in our experiments. Compared to the uni-

orm triangulation in Fig. 3 (d) that is computed from Eq. (2) , we

nd that Eq. (8) is able to trap the nearby sites into feature lines,

eading to a feature aligned triangulation shown in Fig. 3 (c). Note

hat our technique to achieve feature alignment [26,34] is quite dif-

erent from existing approaches on this side that usually require a

eature-line detection step. 

. Super-linear convergent algorithm 

In this section, we summarize the particle-based method and

etail the components of the algorithm including the computation

f the objective function and the algorithmic pseudo-code. 

.1. Objective function 

The objective function is shown in Eq. (8) , which is indepen-

ent of the specific representation form of the input surface and

as infinite-order smoothness. In order to achieve a better conver-

ence rate, we use the L-BFGS solver to optimize the sites X . The

radients of the objective function 

∂E 
∂x i 

are: 

∑ 

j � = i 
− (τ−τx i 

−τx j 
)(x i −x j ) 

2 σ 2 e 
−(τ−τx i 

−τx j 
) 

‖ x i −x j ‖ 2 
4 σ2 , 

i = 1 , 2 , . . . , N, 

(9) 

here N is the user-specified number of sites. 
.1.1. Initialization 

We need to initialize a user-specified number of sites for fur-

her optimization. It is natural that a set of uniformly distributed

ites are helpful for reducing the number of iterations. In our im-

lementation, a user-specified number of initial seeds X are gener-

ted on S with a uniform random distribution according to original

urface areas. 
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Fig. 6. Our algorithm has a significant advantage of yielding a high-quality mesh. 

Here the target number of vertices is 17 K and the offset distance is set to 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Generating high-quality polygonal offset surface. 

Input : A surface S, a user-specified offset distance d, and N 

initial sites. 

Output : A polygonal offset surface. 

while max i | ∂E 
∂x i 

· x i −x S 
i 

d 
| ≥ 10 −6 do 

Update the ANN data structure for the current site 

collection X ; 

for each site x i do 

Get neighboring sites from ANN; 

for each neighboring site x j do 

Compute E i j using E i j = e 
−(τ−τx i 

−τx j 
) 
‖ x i −x j ‖ 2 

4 σ2 ; 

Compute F i j using F i j = 

− (τ−τx i 
−τx j 

)(x i −x j ) 

2 σ 2 e 
−(τ−τx i 

−τx j 
) 
‖ x i −x j ‖ 2 

4 σ2 ; 

end 

Sum F i j with regard to j to get F i ; 

end 

Sum E i j to get the total energy E; 

Feed the scalar E and the vector F into the L-BFGS solver 

to get updated locations of X ; 

Adjust X such that the sites are located on the offset 

surface; See Eq. (10) ; 

end 

Connect the sites to output the polygonal offset surface. 
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4.1.2. Choice of σ
Basically, σ is related to the influence range of each parti-

cle. If the distance between two particles is larger than 5 
√ 

2 σ,

then the force between them is negligible. In this work, we set

σ = c 
√ | S| /N , where | S | denotes the total area of the entire surface,

and c is an empirical coefficient and typically set to 0.25. 

4.1.3. Computation of the objective function 

Obviously, computing the objective function E , as well as its

gradients, requires O ( N 

2 ) time. To reduce the computational cost,

we need to ignore those terms that almost do not contribute to

E . In our implementation, we consider only the particle pairs that

have a distance less than 5 σ . To quickly filter out those redundant

particle pairs, we use the Approximate Nearest Neighbor (ANN) li-

brary [35] to achieve this purpose. 

4.1.4. Hard constraint of the offset distance 

During each iteration of optimization, we need to adjust the

sites such that they are constrained on the offset surface. Let x i be

one site and x S 
i 

be its projection on the primitive surface S . Then

x i should be updated to x ′ 
i 

as follows. 

x 

′ 
i = x 

S 
i + d × x i − x 

S 
i 

‖ x i − x 

S 
i 
‖ 

. (10)

4.1.5. Termination condition 

The termination condition is set to 

max 
i 

| ∂E 

∂x i 

· x i − x 

S 
i 

d 
| < 10 

−6 . (11)

That is to say, even if we perturb these sites along the tangent

plane, the objective function will not decrease any more. 

4.1.6. Site connection 

When the optimization converges, the sites are uniformly dis-

tributed on the offset surface, and thus it is very easy to build

connection between them. In our implementation, the final mesh

is extracted as the restricted Delaunay triangulation (RDT) [36] re-

stricted on the surface. 

4.2. Algorithm 

Algorithm 1 shows the pseudo-code. Fig. 4 shows an example of

offsetting the Squirrel model with various distance settings. When

N = 10 K, it requires about 2.5 s for generating the offset surface. 

5. Experimental results 

We implemented our algorithm in Microsoft Visual C++ 2013.

All the experiments were conducted on a computer with Intel(R)

Core(TM) i7-6700QM CPU 2.60 GHz and 4 GB memory. All the

models are scaled into a bounding box with a unit-length diago-

nal. In the following, we will evaluate our algorithm in meshing

quality, performance, topological correctness and accuracy. 
.1. Scalability 

Fig. 5 shows four examples where the inputs are respectively a

olygonal mesh ( Fig. 5 (a)), an implicit function (( Fig. 5 (c)) 

x 2 + 9 / 4 × y 2 + z 2 − 1 

)3 

− x 2 × z 3 − 9 / 80 × y 2 × z 3 = 0 , 

 parametric form ( Fig. 5 (e)): 

 = (1 − cos u ) × sin u × cos v , 

 = (1 − cos u ) × sin u × sin v , 

 = cos u. u, v ∈ [0 , 2 π ] 

nd a point cloud ( Fig. 5 (g)). The four examples show that our al-

orithm supports various kinds of input models. The target number

f vertices is set to 10 K. It requires about 2.5 s to compute each

ffset surface. The general adaptability distinguishes itself from the

xisting approaches for offsetting surfaces. 

.2. Meshing quality 

We use the angle regularity to measure the meshing quality.

et θmin be the smallest angle, and θa v g be the average angle. In

ig. 5 , we give the statistics plot of angles in (b,d,f,h). It can be seen

hat most of the angles are very close to 60 o , which shows our

esulting meshes have an overall desirable meshing quality. 

In order to compare our algorithm with the signed distance

eld based method [14] and the famous software Rhino, we com-

ute the offset surface for the Teddy model shown in Fig. 6 . Table 1

ives the statistics of Lo values [37] : G (
 ABC) = 

S 
 ABC 

| AB | 2 + | BC| 2 + | CA | 2 . Let

 min be the lowest quality value, and G a v g be the average value.

able 1 shows that our algorithm has a significant advantage of

eshing quality. Note that G a v g is very close to 
√ 

3 / 12 , which im-

lies that our algorithm is able to generate a high-quality mesh
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Fig. 7. Comparison of meshing quality between ours (b) and the boolean operation based method (c). The latter cannot work for offsetting in practice. 

Fig. 8. Performance plots. 
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w

Fig. 10. Our algorithm is robust to bad initialization. 

 

s  

S  

n  

s  

e  

t  
ith most of the triangles being approximately equilateral. Fur-

hermore, our algorithm exhibits the merit of feature alignment,

hich is the second advantage. 
Fig. 9. The energy and gradient change plots of the Duck model during
For most of the existing approaches, they have to deal with the

elf-intersection issue when the offset distance is relatively large;

ee the close-up views in Fig. 6 (c). Although a number of tech-

iques [14] have been proposed for obtaining intersection-free off-

et surfaces, it is not easy to accomplish this step in a robust and

fficient manner. However, our algorithmic framework has no need

o deal with the self-intersection issue since every moveable site is
 the optimization process. The total number of iterations is 102. 
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Fig. 11. Our algorithm has the ability to deal with topology changes, where d is set 

to −1.0 in (a) while −1.5 in (b). 

Fig. 12. Error analysis. (c) is the input model. From (a), (b), (d) and (e), we visualize 

the errors across various offset distances in a color-coded style. 

Table 1 

Comparison of meshing quality on the Teddy surface ( Fig. 6 ). 

Method G a v g G min θa v g θmin 

Ours 0.144337 0.041400 56.21 23.02 

Liu and Wang, 2011 0.105587 0.010841 47.03 1.4699 

Rhino 0.089958 0.009124 39.87 0.9021 

Table 2 

Time statistics with various inputs. 

Model Figure # Tri Offset T d 
a (s) T c 

b (s) T tol (s) 

Heart 5 (c) 10K −0 . 05 0.851 0.8898 1.7408 

20K 1.983 1.7479 3.7309 

30K 3.088 2.5609 5.6489 

Squirrel 4 (e) 20K −0 . 1 2.184 1.8278 4.0118 

30K 3.657 2.6977 6.3547 

40K 5.037 3.658 8.695 

Dog 1 40K 0.03 5.670 3.9529 9.6229 

80K 13.988 5.3058 19.2938 

100K 25.173 10.3076 35.4806 

Moai 3 60K 0.02 14.501 4.8149 19.3159 

100K 27.016 9.8513 36.8673 

200K 86.99 20.0724 107.0624 

a T d –optimization time. 
b T c –polygonal mesh generation time. 
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Fig. 13. Accuracy comparison. (a) shows the plots of the average error with regard to th

based method, if the voxelization resolution is too low (32 × 32 × 32), the resulting offset 

will takes much longer time. If measured at the same level of time cost, our algorithm is
equired to keep the offset distance away from the base surface, as

hown in Fig. 6 (a). This is another advantage of our algorithm. 

In addition, it seems to work well by performing a series of

esh boolean operations [38] across a sufficiently large number of

pheres centered at the original surface. We use the Bird model in

ig. 7 (a) for test. If we use 1K spheres to generate the offset sur-

ace, it requires about 2K s to get a poorly triangulated result; see

ig. 7 (c). If we use more spheres, a numerical issue occurs due to

he fact that the meshing quality becomes worse and worse. By

ontrast, our method requires only 30 s to generate a high-quality

riangulated offset surface with 100K faces; see Fig. 7 (b). 

.3. Efficiency 

Recall that we use the L-BFGS solver to optimize the sites,

hich exhibits a super-linear convergence in our experiments. Fur-

hermore, we use the Approximate Nearest Neighbor (ANN) li-

rary to filter out those pairs that contribute little to the objective
e computational cost on the Dog model (b). (c) is our result. For the voxelization- 

surface is broken (d). When the voxelization resolution amounts to 64 × 64 × 64, it 

 much more accurate than the voxelization-based method. 
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Table 3 

Error analysis. 

Model Figure #Tri Offset() E a v g E max 

Heart 5 (c) 20K −0.02 3.626 ×10 −6 0.02007 

0.02 2.151 ×10 −6 0.02100 

0.05 2.118 ×10 −6 0.05006 

Squirrel 4 40K −0.1 4.456 ×10 −6 0.010 0 01 

−0.05 3.212 ×10 −6 0.090 0 0 

0.1 1.110 ×10 −6 0.010 0 06 

Bear 12 60K −0.02 6.403 ×10 −7 0.020 0 0 

0.02 3.501 ×10 −7 0.02160 

0.05 4.342 ×10 −7 0.05004 

Dog 1 100K −0.01 9.491 ×10 −7 0.0591 

0.05 2.453 ×10 −5 0.04120 

0.1 1.24 ×10 −5 0.07005 

f  

5  

m  

m

 

b  

1  

r  

t  

s  

a  

a  

a  

s

 

u  

c  

v  

t  

p

5

 

m  

a  

s  

w  

a  

t  

r  

f  

t

5

 

b  

p  

p  

d  

g  

t  

t  

r  

d

 

c  

l  

c  

h

5

 

l  

t  

t  

W  

r

E

F

T  

c

 

v  

m  

G  

t  

l  

i  

c

6

 

i  

a  

l

 

 

 

 

 

7

 

e  

s  

t  

r  

p  

f

A

 

t  

i  

M  

N  

S  

s  

R  

p

R

 

unction. In detail, we omit the site pairs whose distances exceed

 σ . The two techniques are central to guarantee the high perfor-

ance. In this subsection, we respectively show the overall perfor-

ance and the convergence rate. 

In order to test the overall performance, we set the target num-

er of the offset surfaces of the Kitty and Duck model to vary from

K to 100K and show the performance plots in Fig. 8 . In Table 2 , we

espectively give the timing costs spent in the optimization of par-

icle system T d and those in generating the final mesh T c , which

hows the high performance of our algorithm. For example, gener-

ting the offset surface of 80K triangles for the Dog model requires

bout 19 seconds while the voxelization-based method [8] , gener-

ting a polygonal offset with poor triangulation, needs about 25

econds. 

In order to observe the convergence rate of our algorithm, we

se Fig. 9 to show the energy decreasing plot and the gradient de-

reasing plot for the Duck model (the target offset surface has 10K

ertices). From the plot, we can clearly see that the objective func-

ion, as well its gradient norm, decreases very sharply, which im-

lies that our algorithm has a super-linear convergence rate. 

.4. Robust to bad initialization 

In order to test if our algorithm is robust to initialization, we

ake 5K sites gathering around the right ear of the Kitten model,

s shown in Fig. 10 (a). From Fig. 10 (b–g), we can see that the

ites gradually spread over the surface until they become uniform,

hich is due to the repulsion between sites. This shows that our

lgorithm is able to get a high-quality offset mesh even if the ini-

ial sites are not well distributed. For this example, our algorithm

equires 320 iterations and about 20 s to compute the offset sur-

ace. It’s worth noted that an as-uniform-as-possible initial site dis-

ribution is helpful to reduce the number of iterations. 

.5. Topological correctness 

It’s easy to know that the topology of an offset surface may

e different from that of the base mesh, especially when we com-

ute an inward offset surface. Most of existing approaches have to

erform an extra step of removal of redundant parts, which is te-

ious and highly non-trivial. Our algorithm, however, can naturally

uarantee the topological correctness. The key lies in that we keep

hose sites at a constant distance d from the base surface during

he optimization process. So it is impossible to have sites on the

edundant parts since the corresponding distance in between is not

 . 

In Fig. 11 , we show two examples of inward offset surfaces. It

an be seen that the resulting offset surfaces have different topo-

ogical structures from the base surfaces and consist of multiple

onnected components, which demonstrates that our algorithm

as the ability to deal with topology changes. 
.6. Error analysis 

Generally speaking, our resulting polygonal mesh is not abso-

utely accurate. We perform error analysis in this way: for an arbi-

rary point p on the offset surface, we find its projection point q on

he primitive surface, and then keep down E(p) = |‖ p − q ‖ − d | /d .

e use average and maximum errors [39] to measure the accu-

acy: 

E a v g = 

1 

n 

n ∑ 

i 

E ( p i ) , 

 max = max 
1 ≤i ≤n 

{ E(p i ) } . (12) 

ig. 12 visualizes the errors of a family of the Teddy’s offsets. 

able 3 shows the detailed error statistics. From the statistics we

an clearly see that the results are very accurate. 

We use Fig. 13 (a) to compare our algorithm with the existing

oxelization-based method. It can be seen that our result is much

ore accurate if measured at the same level of computational cost.

enerally speaking, it is hard to set the voxelization resolution for

he voxelization-based method. If the voxelization resolution is too

ow, the resulting offset surface will have a topological error. But

f the resolution is too high, it will take much more time since the

omputational time is at least cubic to the accuracy parameter. 

. Limitations 

In spite of the significant advantages in terms of meshing qual-

ty, computational performance, topological correctness and feature

lignment, our algorithm, in its current form, still has a couple of

imitations including: 

• Accuracy. In Section 5.6 , we show that the largest errors often

occur in the concave regions of the offset surface (assuming off-

setting outward). The reason behind lies in the fact that the real

offset surface is generally non-smooth around these areas. 
• Performance. Currently our algorithm cannot compute offset

surfaces in real time, which limits its use in some interactive

applications. 

. Conclusions and future works 

In this paper, we propose a general and fast algorithm to gen-

rate a feature-aligned and high-quality triangle mesh of an offset

urface based on particle system. The algorithm takes L-BFGS as

he solver and thus has a super-linear convergence rate. Our algo-

ithm supports multiple kinds of inputs, e.g., triangle meshes, im-

licit functions, parametric surfaces or even point clouds. In the

uture, we shall give a GPU-based speedup implementation. 
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