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Shape description and feature detection are fundamental problems in com-
puter graphics and geometric modeling. Among many existing techniques,
those based on geodesic distance have proven effective in providing intrin-
sic and discriminative shape descriptors. In this article we introduce a new
intrinsic function for a three-dimensional (3D) shape and use it for shape
description and geometric feature detection. Specifically, we introduce the
intrinsic girth function (IGF) defined on a 2D closed surface. For a point p

on the surface, the value of the IGF at p is the length of the shortest nonzero
geodesic path starting and ending at p. The IGF is invariant under isometry,
insensitive to mesh tessellations, and robust to surface noise. We propose
a fast method for computing the IGF and discuss its applications to shape
retrieval and detecting tips, tubes, and plates that are constituent parts of 3D
objects.
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1. INTRODUCTION

We introduce a new shape function, called the in-
trinsic girth function (IGF), which is defined on the
boundary surface of a three -dimensional (3D) shape,
and study its applications to shape analysis and shape
retrieval. Briefly speaking, the value of the IGF at a
point p on a closed surface M is the length of the
shortest nonzero geodesic path on M that starts and
ends at p (see the right inset figure). Intuitively, it
is the girth of the surface M based at p, hence the
name intrinsic girth function.

Since the IGF is intrinsically defined with geodesics, it is invari-
ant under isometry, which is a shape change that preserves geodesic
distances. Therefore, the IGF is oblivious to pose changes of a 3D
shape, since pose changes are typically an approximate isometry
in applications such as animation and shape deformation. Further-
more, we will show that the IGF is insensitive to mesh tessellations
and robust to surface noise up to a reasonable level. Due to these
properties, the IGF induces an effective shape signature for shape
matching. We will also show that the IGF can be used to effectively
detect the constituent parts of 3D objects that are tips, tubes, and
plates, respectively.

To facilitate the application of the IGF, we will present an effi-
cient method for computing the IGF of triangle mesh surfaces. Our
method is built on existing exact geodesic algorithms [Mitchell et al.
1987; Chen and Han 1990; Surazhsky et al. 2005; Xin and Wang
2009; Liu 2013] that discretize all the shortest paths into a finite
number of windows, each encoding a set of shortest paths sharing a
common face sequence. A naı̈ve adaption of the existing methods
would consider all the possibilities that a pair of windows meets at
a mesh edge or vertex, leading to an algorithm of O(n4 log n) time
and O(n2) space, which would be too inefficient for practical appli-
cations. We observe that only windows near the circumference of
an expanding geodesic disk centered at a point p may contribute to
determining the value of IGF at p and hence need to be processed.
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This observation enables us to develop a set of effective speed-up
techniques to develop a fast and practical algorithm.

Contributions: We present the concepts, computation, and ap-
plications of the IGF. Our main contributions are as follows:

(1) The definition of the IGF as a new shape function;
(2) An efficient algorithm for computing the IGF of a triangulated

surface;
(3) A study on the application of the IGF as an isometry-invariant

shape signature to shape matching and shape retrieval;
(4) A study on the application of the IGF to shape structure analysis

in detecting tips, tubes, and plates that are constituent parts of
3D shapes.

2. RELATED WORK

In the following we will review some representative works on shape
signatures and discrete geodesics, which are related to our work.

Shape Signatures. Since large databases of 3D models are be-
coming available, shape retrieval [Osada et al. 2002; Gal et al.
2007; Tangelder and Veltkamp 2008; Chang et al. 2003; Zimmer
et al. 2013; Litman et al. 2014] and shape analysis [Ovsjanikov
et al. 2012; Sun et al. 2009] are of an increasing importance. Gen-
erally, we need to convert 3D objects of interest into a compact
representation for this purpose. An effective shape signature should
be invariant to scale, translation, and rotation, as is the case with
Shape Context [Belongie et al. 2000] and Spin Image [Johnson
and Hebert 1999; Assfalg et al. 2007]. An important class of these
techniques is to develop some shape signatures able to discriminate
different shapes but oblivious to different poses of the same shape
[Lian et al. 2013; Gal et al. 2007; Shapira et al. 2008] or invariant
under isometry [Aubry et al. 2011; Sun et al. 2009; Bronstein and
Kokkinos 2010]. We refer to Osada et al. [2002], Gatzke et al.
[2005], Tangelder and Veltkamp [2008], Bronstein et al. [2011], and
Mendoza [2011] for a comprehensive survey on shape retrieval.

One kind of research work on shape signatures has been focusing
on defining informative descriptors that are often high dimensional.
For example, several spectral methods [Sun et al. 2009; Bronstein
and Kokkinos 2010; Aubry et al. 2011; Litman et al. 2014] based
on the Laplace-Beltrami operator associated with the shape have
been proposed in recent years. The resulting descriptors are of-
ten of a high complexity and have to be mapped to another space
spanned by a vocabulary of typical feature vectors before shape
retrieval [Bronstein et al. 2011; Litman et al. 2014]. Another line of
methods integrate multiple features to improve the shape retrieval
performance [Kuang et al. 2015; Chen and Chiang 2010]. Clearly, a
desirable descriptor should be able to capture both isometric prop-
erties [Ion et al. 2007, 2008] and perceptual features [Gal et al.
2007] in order to improve the overall discriminative ability. This
motivates us to propose a new descriptor, called the IGF.

Shape Diameter Function. We are going to review in more detail
the shape diameter function (SDF) introduced by Gal et al. [2007]
because of its similarity to the IGF proposed in the present article
and because we will use the SDF in junction with
the IGF for shape retrieval and part analysis of
3D shapes. The SDF is defined on the boundary
surface of a 3D object that measures the local
thickness of the object. The SDF is similar to
the medial axis transform [Choi et al. 1997] but
it circumvents the notorious difficulty of robust
computation of the medial axis transform. Con-
sider a point p on a closed smooth surface M.
Let Np be the ray that starts at p and goes in the

Fig. 1. Expanding geodesic disks. (a) The frontier curve comes into tan-
gential contact with itself at a point such that the disk becomes a region
that is no longer singly connected. (b) The entire frontier curve contracts
simultaneously into a single point.

direction of the inward normal vector of the surface M at p. The
value of the SDF at p, called the shape diameter, is the distance
from the point p to the first intersection of the ray Np with the
surface M; See the inset figure. An approximate method [Gal et al.
2007] is proposed for computing the SDF of a mesh surface.

Gal et al. [2007] apply the SDF to define a pose-oblivious shape
signature. Shapira et al. [2008] and Fan et al. [2011] use the SDF for
mesh partitioning and skeletonisation. Shapira et al. [2010] use the
SDF to find analogies between parts of 3D objects. Note that the SDF
is not invariant under isometry, since its definition depends the 3D
embedding of a 3D shape rather than based on geodesic properties.
Nevertheless, it is used quite successfully for shape matching with
pose changes, since local thickness normally does not change much
with pose changes in applications. In contrast, the IGF introduced
in the present article is invariant under isometry. Our tests show
the IGF is better than the SDF for shape retrieval. Furthermore, the
combination of the IGF and the SDF yields a very competitive shape
signature in comparison with other prevailing shape signatures.

Discrete Geodesics. By the term “discrete geodesic,” we mean
a polygonal path on a mesh surface M that is locally shortest
everywhere. Sharir and Schorr [1986] propose the first exact algo-
rithm for computing discrete geodesics on convex polyhedra with an
O(n3 log n) time complexity. Mitchell et al. (MMP) [1987] improve
the time complexity bound to O(n2 log n) using the “continuous Di-
jkstra” technique. Chen and Han (CH) [1990] build a binary tree to
encode all the edge sequences that can possibly contain a shortest
path, thereby improving the time complexity to O(n2). Some vari-
ants of these exact algorithms, such as the algorithms in Surazhsky
et al. [2005] and Liu [2013], are based on MMP’s algorithm, while
the others in Xin and Wang [2009], Ying et al. [2014], and Ying et al.
[2013] are based on CH’s algorithm. Approximation methods are
often used for computing geodesics in computer graphics, with the
fast marching method [Kimmel and Sethian 1998] being the most
popular. Crane et al. [2013] propose an approximation algorithm
based on heat diffusion. Solomon et al. [2014] show that the earth
mover’s distance (EMD) between two delta distributions reduces to
the geodesic distance.

3. INTRINSIC GIRTH FUNCTION

3.1 Definition

Now we are going to give the definition of the IGF and discuss
its properties. Consider the expanding disk that is centered at the
point p and expands on the surface M, as shown in Figure 1.
The circumference of this expanding disk will also be referred to
as the frontier curve, which is an isovalue curve of the geodesic
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distance field centered at p. When the disk grows sufficiently large
on M, the frontier curve will become self-intersecting.

There are two cases where this self-intersection can occur, lead-
ing to two cases for defining the IGF. The generic case of self-
intersection is illustrated in Figure 1(a), where the frontier curve
comes into tangential contact with itself at a point, denoted q, such
that the disk becomes a region that is no longer singly connected.
Evidently, there are two distinct geodesic paths from q to p which,
when joined together, form a p-based geodesic loop γ̊p , because
they have the parallel tangent directions at the point q. This follows
from the property that a geodesic starting at a point is uniquely
determined by its starting direction. This p-based geodesic loop γ̊p

is the globally shortest p-based geodesic loop, since we use the
first point of self contact of the expanding disk. Clearly, the value
of the IGF at the point p, which is defined as the length of γ̊p ,
equals twice the radius of the geodesic disk when the contact at q is
formed.

The shortest p-based geodesic loop may also arise in the second,
special case where the expanding geodesic disk centered at p forms a
self-intersection in a manner that differs from the preceding generic
case, as shown in Figure 1(b). Here the entire frontier curve of the
disk contracts simultaneously into a single point q. It can be shown
that there are at least three geodesics paths of the same length from
q to p; see Sharir and Schorr [1986] for a detailed proof. Hence, in
this case, the value of the IGF at p is taken to be twice the radius of
the disk.

The difference between this special case and the generic case is
as follows. Let Fp(x) denote the geodesic distance function defined
by the geodesic distance from a point x ∈ M to the source point
p. In the generic case, the tangential contact point q is a saddle
point of Fp(x). Note that when M is of genus g ≥ 1, Fp(x) has at
least one saddle point and the contact point q always exists for any
p ∈ M. In the special case, however, Fp(x) has no saddle points
and the contracting point q is the unique local maximum point of
Fp(x). It happens only if M is of genus 0.

3.2 Relation of IGF to Injectivity Radius

To avoid possible confusion, we need to point out that the in-
trinsic girth function is closely related but not equivalent to the
injectivity radius associated with the exponential map at a point
of a surface [Abresch and Meyer 1997]. Given a 2D smooth sur-
face M, consider the exponential map expp at a point p ∈ M:
Tp(M) → M, where Tp(M) is the tangent space of M at p. Let
B(p, r) ⊂ Tp(M) be a disk in Tp(M) that is centered at p and
has radius r > 0. Then the exponential map maps B(p, r) to the
geodesic disk D(p, r) ⊂ M centered at p and having radius r .
When r is sufficiently small, the exponential map from B(p, r) to
D(p, r) is a differeomorphism (i.e., it is injective and its inverse
is also differentiable) and there is a unique minimizing geodesic
connecting p to any point in D(p, r).

However, when r is sufficiently large, the exponential map from
B(p, r) to D(p, r) will stop being differeomorphism. Let exp(p,r)
denote the restriction of expp to B(p, r), which maps B(p, r) to
D(p, r). The injectivity radius at p is defined to the maximum pos-
sible value of r such that the restricted exponential map exp(p,r) is
a differeomorphism. It is known that exp(p,r) fails to be a differeo-
morphism in only two ways [James 1962].

(1) Case 1: As shown in the top row of Figure 2 (also seen in
Figure 1(a)), the boundary of D(p, r0) forms a self-intersecting
point, denoted q, such that there are two distinct minimizing
geodesics from p to q, and these two paths have the same length r0.

Fig. 2. Conjugate points and ridge points. The top row shows how a
geodesic disk centered at the point p goes around a “peak” on a surface.
Here the frontier curve of the disk form a self-intersection to yield a p-based
shortest geodesic loop, shown as the yellow curve, whose length defines the
value of the IGF at p. In fact, q is the first ridge point touched by the frontier
curve of the expanding geodesic disk. Furthermore, the two geodesic curves
from p to q have parallel tangent directions at the point q. When the “peak”
is lowered to become a relatively flat bump, as shown in the bottom row, the
frontier curve of the geodesic disk first develops a conjugate point, denoted
t , at which the exponential map at p has a vanishing Jacobian. Beyond
the conjugate point a nonsmooth point is developed on the boundary of
the disk.

In this case the mapping exp(p,r) is no longer injective and therefore
not a differeomorphism.

(2) Case 2: The boundary of D(p, r0) contains a point, denoted
t , that is conjugate to p along the geodesic from p to t [Hopf
1948; Polthier and Schmies 1999]. As shown in the bottom row of
Figure 2, this case occurs, for example, when the surface bump is
not as pronounced as the case of the top row of Figure 2.

In the first case, the mapping exp(p,r0) has a vanishing Jabobian at
q. In this case, exp(p,r0) is still injective except at q but its inverse is
not differentiable. Hence exp(p,r0) not a differeomorphism. The two
distinct minimizing geodesics from p to q, when joined together at
q, form the shortest geodesic path that starts and ends at p, which,
by definition, is the p-based geodesic loop at p. Therefore, the value
of the IGF at p is 2r0.

In the second case, because conjugate points can easily be caused
by local, small-scale surface variations or bumps, we do not use the
injectivity radius r0 to define the IGF; instead, we let the geodesic
disk D(p, r) continue to grow beyond the injectivity radius r0 to
reach some radius r1 > r0 such that the first self-intersecting point
is formed on the boundary of D(p, r1), and we define the value of
the IGF at p to be 2r1. In this way, by ignoring the injectivity radius
arising due to conjugate points, we make the IGF immune to small
scale surface variations or surface noise to provide a robust shape
description.

To summarize, the IGF is related but not equivalent to the injec-
tivity radius. The IGF is immune to local, small surface variations,
while the injectivity radius is not. Furthermore, the value of the IGF
at any point p is equal to or greater than twice the injectivity radius.

4. COMPUTATION OF INTRINSIC GIRTH
FUNCTION

4.1 Preliminaries

We first introduce necessary notations and basic data structures to
be used in our method.

M: the input polygonal mesh;
e, e−: a mesh half-edge and its negate;
w: a window that encodes a set of shortest paths sharing the
same edge sequence;
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Fig. 3. Illustration of discrete geodesics, p-based geodesic loops and win-
dows. The red curve is the shortest path between the two points t1 and t2. The
orange curve is the p-based geodesic loop. The purple region is a window
that encodes a set of shortest paths starting from the point s.

Q: a priority queue of windows;
Rg: the propagation radius of wavefronts;
γ (p, q), �(p, q): the shortest path between p and q, and the
corresponding length;
γ̊p: the p-based geodesic loop, that is, a closed geodesic curve
on M starting from and ending at p;
D(p, r): the geodesic disk rooted at p with the radius r;
I (p): the value of the IGF at the point p ∈ M.

As shown in Figure 3, the shortest paths from the point s to the
points in the purple region share the same edge sequence. We use
a quadruple (r, l, e, [a, b]), called a window w, to encode the set
of shortest paths, where r is the unfolded image of the last vertex
of the vertex-edge sequence, l is the geodesic distance between s
and r , e is the mesh edge where w arrives, and [a, b] is the segment
covered by w (see the inset on the right figure). Windows are further
classified into pseudosource windows that arrive at mesh vertices
and interval windows that arrive at mesh edges. Windows are a com-
monly used data structure used in existing
methods for exact computation of discrete
geodesics [Mitchell et al. 1987; Surazh-
sky et al. 2005; Chen and Han 1990; Xin
and Wang 2009]. These exact algorithms
differ mainly in the way they avoid the
combinatorial explosion of the number of
windows1. All these exact algorithms can
be adapted to computing the IGF. We use
the ICH algorithm in this article.

4.2 A Naı̈ve Algorithm

To compute the IGF at p, we need to compute the shortest p-based
geodesic loop γ̊p . This is done by finding a pair of windows at the
frontier curve of the expanding geodesic disk that meets each other
in opposite directions. In the following we will first present a naı̈ve
algorithm for this task. This simple algorithm is not intended for
practical use but helps the reader understand the optimized method
we will present later in Section 4.3.

A straightforward algorithm for finding a p-based geodesic loop
candidate works as follows:

Step 1: Compute the exact geodesic distance field rooted at the
given point p and keep all the windows generated;

1The implementations of the MMP and ICH algorithms are available at
http://research.microsoft.com/en-us/um/people/hoppe/proj/geodesics/ and
https://sites.google.com/site/xinshiqing/.

Fig. 4. The right figure shows a flattening of the surface on the left. Note
that the windows w = (r1, l1, e, [a1, b1]) and w− = (r2, l2, e

−, [a2, b2])
determine a p-based geodesic loop if and only if the line segment r1r2

goes through the interval [a1, b1] ∩ [a2, b2], where [a1, b1] and [a2, b2] are
respectively the ending intervals of w and w− on the edge e.

Step 2: For each mesh edge vv′, check if γ (p, v) ∪ γ (v, v′) ∪
γ (v′, p) is locally shortest at v and v′ [Mitchell et al. 1987] and
take the composite path as a p-based geodesic loop candidate if it
is locally shortest at v and v′ at the same time.

Step 3: Refer to Figure 4. For each mesh edge e, we check each
pair of windows w associated with e and w− associated with e−

to see if they are able to determine a p-based geodesic loop. Let
w = (r1, l1, e, [a1, b1]) and w− = (r2, l2, e

−, [a2, b2]). Then w,
together with w−, determines a p-based geodesic loop if and only
if the straight line connected by r1 and r2 goes through [a1, b1] ∩
[a2, b2].

By its definition, we can determine the value of the IGF at a
point p, denoted I (p), by finding a loop candidate with the min-
imum length. The IGF of the whole surface could then be com-
puted if the algorithm is applied to every vertex v ∈ M. This
method is inefficient in both time and space because: (1) it re-
quires O(n2) space to maintain the windows for a mesh with n ver-
tices and (2) the worst-case time complexity of ICH is O(n2 log n)
and every newly generated window has to be matched with the
other O(n) existing windows on the same mesh edge (the num-
ber of windows on a mesh edge is O(n) [Chen and Han 1990]),
the naı̈ve algorithm needs O(n3 log n) time to compute the short-
est p-based geodesic loop and thus the overall time complexity is
O(n4 log n).

4.3 Speed-Up Techniques

The above naı̈ve algorithm is inefficient because it maintains and
processes many loop candidates that clearly do not contribute to
the final p-based geodesic loops. We now present some speed-up
techniques to devise a more efficient method. Our key idea is to
process only the windows near wavefronts and terminate the al-
gorithm as soon as the shortest p-based geodesic loop has been
found. There are two aspects to consider: (1) when to terminate
the algorithm and (2) whether the window w is close enough
to the wavefront and therefore likely to contribute to defining
the IGF.

4.3.1 Termination Condition. We employ the priority queue
Q of windows in the ICH algorithm [Xin and Wang 2009] to en-
sure the from-near-to-far property of wavefront propagation. The
priority of the window w is measured by its minimum geodesic
distance to the source point, that is, the length of the shortest one
among the geodesic paths encoded by w. The propagation works as
follows:
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ALGORITHM 1: Wavefront Propagation Scheme

1 while Q is not empty do
2 Pop out the top-priority window w in Q;
3 Update the propagation radius Rg with w’s minimum

geodesic distance;
4 Compute w’s children and push them into Q;
5 end

On a polygonal mesh, windows in the priority queue are ranked
by their minimum geodesic distances, and Rg has to experi-
ence a step increase throughout the wavefront propagation, in
line with the jump of priorities of windows; see the inset. The
“from-near-to-far” propagation implies that
for all the points (including face interior
points) located inside the geodesic disk
with the radius Rg , their geodesic dis-
tances are already determined [Mitchell
et al. 1987]. In other words, all the p-based
geodesic loops that are not longer than 2Rg

have been found (i.e., can be reconstructed
from the generated windows).

However, as Figure 4 shows, each p-based geodesic loop candi-
date has to be determined by two windows that meet at some edge,
and the priority of the loop is actually up to one of the windows that
comes later rather than the real length of the loop. Therefore, the
shortest p-based geodesic loop cannot be guaranteed to be found
earlier than other p-based geodesic loop candidates. Fortunately,
the above observation gives a suitable termination condition: When
the geodesic disk has a radius Rg , all the p-based geodesic loops at
most 2Rg have been found, and thus the globally shortest p-based
geodesic loop, therefore I (p), has been determined when Rg is
larger than half of the length of the best-so-far p-based geodesic
loop γ̊p .

4.3.2 Identifying Windows at Disk Boundary. The second
speed-up technique is to capture the moment when the boundary
of the current geodesic disk forms a self-intersecting point. For
this purpose, we will check if both the windows of interest are at
the disk boundary and consider specifically how they constitute a
p-based geodesic loop. By the properties of discrete geodesics (see
Section 3), the shortest p-based geodesic loop γ̊p on the mesh M is
a polyline, each segment passing through a polygonal face. There
always exists a point q ∈ γ̊p such that q has the same distance to p
in two opposite directions. Let Lq be the line segment that contains
q. There are three cases regarding the location of q, as shown in
Figure 5:

Case 1: Lq is a mesh edge, denoted vv′ (see Figure 5 (top-left));
Case 2: One endpoint of Lq is the mesh vertex v, and the other

is a point on the edge e; q is closer to v (see Figure 5 (top-right));
Case 3: At least one endpoint of Lq is not a vertex and the

endpoint closer to q is not a vertex (see Figure 5 (bottom)).

Each time when a new window is created, we check if it is likely
to contribute to the determination of I (p). If the newly created win-
dow w is a pseudosource window (i.e., reaching a mesh vertex),
then we consider Case 1 and Case 2. If w is an interval window
(i.e., reaching a mesh edge), then we consider Case 2 and Case 3.
Actually, Case 2 can be absorbed into Case 3. The reason is as
following. Case 2 describes the situation that a pseudosource win-
dow w1 and an interval window w2 determine a p-based geodesic
loop together, and w1 comes later than w2. Considering that w1 will

Fig. 5. Let q be the farthest point constrained on the p-based geodesic
loop γ̊p , that is, there are two equal-in-length shortest paths between p and
q. The location of q can be in three cases, where the segment in red shows
the possible range of q.

immediately produce an interval child, say, w′
1, on the mesh edge of

w2’s interval, it is not late to consider the same loop using w′
1 and

w2. Note that this convenience in implementation is at the cost of the
tight checking condition; see the first requirement of Lemma 4.2.

The key points in checking if w is at disk boundary include:

(1) Determine if w is close enough to the farthest point q.
(2) Determine if w can give a closed curve that is locally shortest

around q.
(3) Determine if the loop given by w is the best-so-far candidate

loop.

The following lemmas provide the rules for checking if pseu-
dosource windows and interval windows are at the disk boundary.
The proofs are given in the Appendix.

LEMMA 4.1. Suppose the window w popped out from the pri-
ority queue is a pseudosource window rooted at v. Let v′ be
a one-ring neighbor vertex of v. The situation that the loop
γ̊p = γ (p, v) ∪ vv′ ∪ γ (v′, p) defines I (p) belongs to Case 1
if the following conditions are met:

(1) �(p, v′) ≤ �(p, v);
(2) γ̊p is locally shortest at v and v′;
(3) ‖γ̊p‖ is shorter than the best-so-far p-based geodesic loop.

LEMMA 4.2. Suppose the window w popped out from the priority
queue is an interval window arriving at the edge e = v1v2, and w−

is an interval window on the reverse edge e−. The situation that the
windows w and w− define I (p) belongs to Case 2 or Case 3 if

(1) �max(w−) + 2 max(‖v1v‖, ‖v2v‖) ≥ �min(w), where v is the
vertex opposite to e, and �max and �min respectively denote
the maximum and minimum geodesic distances given by the
corresponding interval window;

(2) The straight line by connecting w and w−’s roots goes through
w and w−’s common interval;
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(3) The new loop γ̊p is shorter than the best-so-far p-based
geodesic loop.

Remark: In Lemma 4.2, if �max(w−) + 2 max(‖v1v‖, ‖v2v‖) <
�min(w) = Rg, then w− is far behind the wavefront (i.e., inside the
p-based geodesic disk) and no longer useful for determining the
shortest p-based geodesic loop. Hence we delete w− from the win-
dow list on the edge e−in this case. This is helpful in performance
boosting and memory reduction.

4.4 The Complete Algorithm

Combining the aforementioned termination condition and checking
rules yields an efficient algorithm for computing the IGF, as shown
in Algorithm 2. Since it is difficult to establish a theoretically tight
bound on the time and space complexities of the algorithm, we will
provide experimental validations in Section 5 to demonstrate its
improved efficiency.

ALGORITHM 2: Computing I (p)

Input: A closed polygonal mesh M; A point p ∈ M; A
priority queue Q of windows;

Output: The length of the shortest p-based geodesic loop,
I (p);

1 while Q is not empty do
2 Pop out the first window w in Q;
3 if w is a pseudo-source window at v, then
4 Check v and its one-ring neighboring vertices using

Lemma 4.1 and update the best-so-far γ̊p if
necessary;

5 else
6 /*w is an interval window, say, w ∈ e.*/
7 Check w and each window w− ∈ e− using Lemma

4.2;
8 if the first condition of Lemma 4.2 doesn’t hold, then
9 Delete w− from e−.

10 if w and w− satisfy the second and last
conditions of Lemma 4.2, then

11 Update γ̊p by w and w−.
12 end
13 end
14 end
15 Compute w’s children and push them into Q.
16 end
17 if the shortest p-based geodesic loop γ̊p is found, then
18 Return ‖γ̊p‖;
19 else
20 Return 2�(p, q), where q is the farthest point from p.
21 end

5. VALIDATION

In this section we use extensive experimental results to validate our
method for computing the IGF in terms of time and space efficiency,
as well as its insensitivity to mesh quality and its robustness to small
surface variations and topological changes.

5.1 Performance

We implemented and experimented with the IGF algorithm on a
computer with a 64-bit version of Win7 system, a 3.07GHz Intel(R)
Core(TM) i7 CPU and 6GB memory. The coding language is C++
supported by OpenMP. We first give performance statistics with and

Table I. Performance Statistics with and without
the Speedup Techniques. The Test Was Made on the Horse

Model Shown in Figure 6
Naı̈ve Improved

#Faces Timing (s) Memory (Mb) Timing (s) Memory (Mb)
2K 8.0 3.0 0.25 0.2
4K 55.6 10.3 0.76 0.4
6K 173.3 22.0 2.14 0.7
8K 395.5 38.8 4.39 1.2

10K 767.6 61.3 7.73 1.5

without the speed-up techniques in Table I. Then, in Figure 6, we
show the timing plots for six models of resolutions ranging from
2K to 20K faces.

Even with the speed-up techniques proposed in Section 4, our IGF
algorithm is still quite time-consuming when applied to objects with
a large number of mesh vertices. For instance, the processing time is
about 506.9s for the Elephant mesh (Figure 7) with 50K faces. Next
we will show that the IGF is insensitive to mesh resolution. Thus,
for better efficiency, one may compute the IGF on a reasonably
simplified mesh model of an input object.

To investigate the influence of mesh resolution to the IGF, we
compare the cumulative distribution functions (CDF) of the nor-
malized IGFs on five Elephant models of different levels of simpli-
fication, normalized by the total area. See Figure 7(f). The difference
between two IGFs is computed by

d =
∫ Imax

Imin

|CDF1 − CDF2|dI, (1)

where I is the IGF variable and Imax and Imin are respectively
the maximum and minimum IGFs. Visually, the IGFs computed
at the different levels of simplification are all very close to that of
the original model, with the maximum difference being 8.7 × 10−3,
while the computation time cost is dramatically reduced on the sim-
plified versions. For instance, it takes 16.2s for 10K faces and 0.5s
for 2K faces. Because of the insensitivity of the IGF to mesh reso-
lution, all the models shown in this paper are remeshed to have 10K
faces when we apply the IGF for shape retrieval later in Section 6.1.

5.2 Accuracy and Robustness

When different discrete meshes are derived from the same under-
lying smooth model, the accuracy of our IGF method is insensitive
to the meshing quality, because exact geodesic paths pass through
face interior points, rather than being constrained to mesh edges.

Figure 8 shows six versions of the Fertility model with differences
in mesh density and quality, as well as geometric and topological
variations. Still using Equation (1) to estimate the differences be-
tween IGFs, the errors of the variants (see Figures 8(b)–(f)) relative
to the original model (see Figure 8(a)) are quite small: (b) 7.7×10−3,
(c) 5.3×10−3, (d) 1.2×10−2, (e) 2.7×10−2, and (f) 5.9×10−2.
Hence, we conclude that the IGF is insensitive to mesh tessella-
tions and resistant to mild geometric noise (see Figure 8(d)) and flat
humps (see Figure 8(e)). Even when the input model has some topo-
logical changes (see Figure 8(f)), the IGF still gives a meaningful
result: The majority of the IGF values remain unchanged.

Figure 9 shows that the IGF is pose oblivious. Due to the nice
geometric properties, the IGF can be used to define an effective
shape aware signature, as we will discuss in Section 6.1.
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Fig. 6. Performance plot. Each model has different resolutions from 2K to 20K faces.

Fig. 7. The IGFs of the five Elephant models with different levels of simplification are very close to each other, whereas the computation time is dramatically
reduced for the simplified versions.

Fig. 8. The IGF is insensitive to differences in mesh surface quality. (a) An isotropic mesh; (b) an anisotropic mesh; (c) a denser isotropic mesh; (d) a mesh
with surface noise; (e) a mesh with relatively flat humps; (f) the majority of the IGF values remains unchanged even with two changes in the topology of this
model.

6. APPLICATIONS

In this section, we discuss two applications of the IGF. One is to use
the IGF as an isometry-invariant shape signature to shape matching
and shape retrieval, and the other is to detect constituent parts of 3D
shapes, including tips, tubes, and plates.

6.1 Shape Retrieval

As mentioned in Section 1, the girth of the point p is related to the
nearest saddle point of the p-based geodesic distance field. This

observation naturally leads to an approximate implementation that
runs the Fast Marching Method [Kimmel and Sethian 1998] and
finds the saddle point of the Morse-Smale complex that is nearest
to p [Huang et al. 2008]. This approximate method will be referred
to as IGF-MS. Beside IGF and IGF-MS, the other shape signatures
used for comparison include:

(1) The shape diameter function (SDF) [Shapira et al. 2008];
(2) The scale-invariant heat kernel signature (SIHKS) [Bronstein

and Kokkinos 2010];
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Fig. 9. The histograms of the IGFs for the horse model with different poses
demonstrate the pose invariance of the IGF. The horizontal axis stands for
scaled girth values, with the maximum girth being scaled to 1.

(3) The wave kernel signature (WKS) [Aubry et al. 2011];
(4) The average geodesic distance function (GeoAverage, also

called the geodesic centricity function) [Ion et al. 2007;
Martinek et al. 2012; Shamir et al. 2004];

(5) The farthest geodesic distance function (GeoFarthest, also
called the geodesic eccentricity function) [Martinek et al. 2012].

In order to compute and compare these shape signatures, an input
object is first normalized such that its total surface area equals 1 and
the model is remeshed to have 10K faces. In the discrete setting, a
shape signature can be represented by a scalar or vector sequence,
weighted by the area of influence of each vertex, w1, w2, . . . . A
standard measure for characterizing the similarity between two
signatures is the earth mover’s distance [Pele and Werman 2009;
Rubner et al. 2000] (EMD), also known as the Wasserstein metric.

Let (ξ1, ξ2, . . . , ξm) and (η1, η2, . . . , ηn) be the signatures of two
separate models, where ξi and ηj are k-dimensional vectors. The
EMD is to minimize the following objective function:

D(ξ, η) = min
fij

fij dij ,

where dij is the distance between ξi and ηj and fij satisfies
∑

j

fij = w
ξ

i ,
∑

i

fij = w
η

j .

Note that here we take “=” rather than “≤” in the constraints since∑
i w

ξ

i = ∑
j w

η

j = 1 holds for normalized surfaces. Specifically,
the EMD is equivalent to the difference between their CDFs when
ξi and ηj are 1D. However, when ξi and ηj are high dimensional, for
example, SIHKS and WKS, computing the EMD is both time and
space inefficient even if we use the optimized implementation [Pele
and Werman 2009]. Because of this, we evaluate the retrieval per-
formances of SIHKS and WKS based on bag of features (BoF) as

in Bronstein et al. [2011], which is a histogram representation with
regard to independent features.

We experimented with shape signatures on the McGill 3D Shape
Benchmark [Siddiqi et al. 2008] and the SHREC’11 dataset [Lian
et al. 2011], with the specific parameter values recommended in the
original articles.

• Since some models in the datasets are of poor triangulation
quality, leading to failure of computing eigenvalues of Laplace-
Beltrami matrices, we remesh these models to have 10K faces.

• We weigh the signatures by the areas of the Voronoi regions
of mesh vertices. The number of bins is set to be 512 for 1D
histograms. The vocabulary size of BoF is fixed to 48.

• For the SDF [Shapira et al. 2008], the opening angle is set to be
120o, and we use 30 rays for each vertex.

• For the SIHKS [Bronstein and Kokkinos 2010], the log-scale
space basis is set to be 2.0, the time scale is between 1 and 20,
and the number of eigenfunctions is 19.

• For the WKS [Aubry et al. 2011], the variance of the WKS
Gaussian with respect to the difference of the two first eigenvalues
is set to be 6.0, and the number of evaluations of WKS is 100.

• When computing average/farthest geodesic distances and ap-
proximate IGFs, we use the Fast Marching Method [Kimmel and
Sethian 1998] as the core routine.

• The commonly used measures for evaluating the retrieval per-
formance of a descriptor include [Shilane et al. 2004; Tangelder
and Veltkamp 2008; Osada et al. 2002]:
• Nearest neighbor (NN): the percentage of the closest matches

belonging to the same class as the query.
• First-tier and second-tier: the percentage of models in the

query’s class that appear within the top K − 1 and 2(K − 1)
matches respectively, where K is the size of the query’s class.

• E-measure: a composite measure of the precision and recall
for a fixed number (32) of retrieved results.

• Discounted Cumulative Gain (DCG): a statistic that weighs
correct results near the front of the ranked list more than correct
results toward the end of the list [Järvelin and Kekäläinen
2000].

The statistics of retrieval performance of these shape descrip-
tors on the McGill Benchmark and the SHREC’11 dataset are
given in Table II and Table III, respectively. Figure 10 shows the
precision-recall curves, describing the relationship between
precision and recall in a ranked list of matches, where the curves
that are shifted up represent superior retrieval results. A group of
retrieval examples for articulated models are shown in Figure 11.

Since the IGF captures geometric features in a more balanced
manner, neither too global nor too local, experimental results show
that the IGF outperforms all the other 1D descriptors. The IGF-MS
has a slightly lower retrieval performance but runs faster than our
exact geodesic algorithm due to its use of the Fast Marching Method.
The GeoAverage and the GeoFarthest, in spite of their invariance to
isometry, encode the geometry only in a global manner.

Clearly, the SIHKS and the WKS are more informative and there-
fore have stronger discrimination ability that the IGF, which can be
explained by their high-dimensional representations. In this spirit,
we tested with a composite shape descriptor that combines IGF
and SDF, denoted as IGF-SDF, and also observed improved re-
trieval performance, as shown by the PR curve marked with stars in
Figure 10(c) and detailed performance measures in the last row of
Table III.
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Table II. Retrieval Performance Comparison for the McGill 3D Shape Benchmark
Articulated NN Tier 1 Tier 2 E-Measure DCG Non-Articulated NN Tier 1 Tier 2 E-Measure DCG

IGF 93.33% 65.35% 79.56% 61.27% 90.32% IGF 80.69% 51.47% 70.27% 50.94% 82.42%
IGF-MS 92.55% 63.40% 77.75% 59.65% 89.37% IGF-MS 80.20% 49.93% 68.67% 49.59% 81.55%

SDF 87.45% 54.12% 74.75% 43.04% 86.31% SDF 71.78% 47.80% 70.06% 47.46% 80.40%
GeoAverage 86.27% 53.31% 75.96% 52.96% 85.35% GeoAverage 58.91% 30.63% 43.69% 30.14% 70.08%
GeoFarthest 72.54% 41.44% 70.88% 43.78% 79.64% GeoFarthest 40.59% 21.51% 33.28% 21.78% 63.71%

SIHKS 97.64% 72.96% 85.65% 68.66% 93.87% SIHKS 87.12% 46.94% 61.44% 44.91% 82.12%
WKS 98.03% 83.70% 93.83% 78.25% 96.83% WKS 90.09% 50.16% 69.77% 49.98% 84.02%

Table III. Retrieval Performance Comparison for SHREC’11
NN Tier 1 Tier 2 E-Measure DCG

IGF 99.17% 70.66% 81.13% 60.32% 92.53%
IGF-MS 98.67% 68.55% 79.28% 58.72% 91.56%

SDF 96.67% 68.40% 80.29% 58.75% 91.33%
GeoAverage 86.33% 50.98% 66.18% 47.33% 83.11%
GeoFarthest 76.50% 43.38% 56.91% 40.28% 77.90%

SIHKS 100% 97.52% 99.51% 75.94% 99.69%
WKS 99.83% 97.35% 98.85% 75.60% 99.49%

IGF-SDF 99.83% 90.44% 95.15% 72.01% 98.03%

Fig. 10. Precision-recall curves.

6.2 Tip Identification

We now discuss the application of the IGF to shape feature analysis–
identification of tip parts. While there is no rigorous definition for
it, a tip part of a 3D object is understood to be the end region, or
the extremity, of a tubular part of a 3D object. Although tip parts
are important model features needed for feature-based geometric
processing, such as mesh simplification, there is a lack of effective
means for their reliable identification.

Before applying the IGF to tip identification, we need to investi-
gate the continuity of the IGF in more detail. The IGF, as well as the
shortest p-based geodesic loop γ̊p , is continuous at most points on
the boundary surface of a 3D object; that is, a small change of the
base point p causes only a small change to γ̊p , and hence a small
change to the value of the IGF.

However, there are two cases where discontinuity can occur. The
first case of discontinuity is referred to as path discontinuity. In this
case, with a slight change of a variable base point p from p1 to
p2, the shortest p-based geodesic loop jumps to a different con-
figuration, as shown in Figure 12. That is, the shortest p1-based
geodesic loop and the shortest p2-based geodesic loop are far apart
from each other. In this case, however, the length of γ̊p still changes
continuously; hence, the IGF itself does not experience any discon-
tinuity. Therefore, the path discontinuity does not necessarily mean
the discontinuity of the IGF.

In the second case, typically around the extremities of an object,
a slight change of a variable base point p causes both a jump of
the shortest p-based geodesic loop γ̊p and discontinuity of the IGF,
as shown in Figure 12, where p changes from p3 to p4. More
specifically, at one point of the process of p moving from p3 to p4,
γ̊p will suddenly contract to a point (using a rubber band analogy).
Then we will have to find a much longer loop to define the p-
based geodesic loop, such as the one based at p4. This type of
discontinuity is referred to as length discontinuity, which means the
discontinuity of the IGF. Since length discontinuity always occurs,
and only occurs, at the extremities of an 3D object, we propose to
explore it for tip detection.

Now we consider how to detect the discontinuity of the IGF on
a mesh surface in order to effectively identify shape extremities.
When a base point p moves from the mesh vertex v1 to the next
vertex v2, if the p-based geodesic loop changes smoothly, then we
have |I (v1) − I (v2)| ≤ 2‖v1v2‖, since the composite loop γ̊v1 ∪
v1v2 ∪ v2v1 gives an upper bound on the length of γ̊v2 . However, if
length discontinuity occurs, we will have |I (v1)−I (v2)| > 2‖v1v2‖,
because of the sudden jump of the shortest v1-based geodesic loop
to the much longer v2-based geodesic loop. Hence, it is suitable
to apply the criterion that an edge v1v2 intersects the discontinuity
contour of the IGF if

|I (v1) − I (v2)| > 2‖v1v2‖. (2)

We apply this criterion to all the edges of an input object (repre-
sented as a mesh surface) to find those edges that cross discontinuity
contours, and simply use the edge sequences to define the disconti-
nuity contours to delineate the tip parts of the input object.

Figure 13 shows an example of applying the IGF to tip detec-
tion, in comparison with the SDF [Gal et al. 2007], the GeoAverage
[Martinek et al. 2012], and the persistent heat maxima [Dey et al.
2010], with close-up views of the tip parts to be detected. The
previous shape descriptors are based on a continuous function that
gradually changes everywhere on the surface of a smooth 3D shape,
though they may have a large gradient around a tip region. There-
fore, a user-specified parameter needs to be provided in order for
these methods to delineate a tip region after the center point of the
region is found [Dey et al. 2010]. In contrast, the IGF works with
no need for user-specified parameters. However, the discontinuity
contour induced by the IGF is sensitive to geometric variations,
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Fig. 11. Shape retrieval examples using the IGF on the articulated models from the McGill 3D Shape Benchmark.

that is, a small perturbation may cause a significant change of the
discontinuity contour; see the highlighted boxes in Figure 13.

6.3 Tube/Plate Structure Identification

We now discuss another application of the IGF to shape feature anal-
ysis: identification of tubular parts. Tubular structures are abundant:
bars, tree branches, blood vessels, and so on. Automatic and reliable
detection of tubular structures is useful to many geometric process-
ing tasks. For example, in model preparation for 3D printing, the

tubular parts of an object, such as thin slivers and seams, need to be
identified and checked for strain analysis, since they often represent
weak links of the object [Luo et al. 2012; Zhou et al. 2013; Lu et al.
2014]. In biomedical engineering, rodlike structures in trabecular
bone need to be identified in establishing correlation between bone
architecture and its mechanical characteristics.

Several methods have been proposed for tube or plate structure
identification. For example, Goswami et al. [2006] propose to dis-
tinguish flat regions from tubular regions of a 3D object by detecting
unstable manifolds of index 1 and index 2 saddle points lying on
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Fig. 12. Path discontinuity and length discontinuity. Path discontinuity
means that the shortest p-based geodesic loop jumps to a different config-
uration but keeps the continuity of IGF when the base point p is enforced
a slight change, for example., moving from p1 to p2. Length discontinuity
means the discontinuity of the IGF, which happens around tip parts, for
example,, when p moves from p3 to p4.

Fig. 13. The IGF has a contour of discontinuity around the tip parts (a), in
contrast to the SDF (b), the GeoAverage (c) and the persistent heat max-
ima (d), which are smooth everywhere.

the interior medial axis of the object. However, their algorithm may
misidentify a tubular structure as flat or a flat structure as tubular
due to lack of sampling. The method in Wong and Chung [2008];
Bas and Erdogmus [2011] tackles the same problem by extract-
ing model centerlines, followed by principal component analysis
(PCA). However, the method requires an expensive voxelization
step and cannot resolve intersections between two tubular shapes.

The IGF provides a suitable geometric characterization for iden-
tifying tubular structures, because for a point located on a tube its
shortest p-based geodesic loop γ̊p always goes around the tube and
gives a relatively small IGF value compared to the length of the
tube; and γ̊p tends to be considerably longer if p is not on a tube.
Considering that the SDF [Gal et al. 2007] measures the thickness
of an object, we can distinguish plate structures from tubular shapes
by combining the SDF and the IGF, that is, defining the plate part

Fig. 14. Combining the IGF (a) and the SDF (b) of the same model, we
can distinguish the chair seat (c) from tubular shapes based on user-specified
thickness parameters.

as the point set that satisfies

{p | IGF(p) > τ1, SDF(p) < τ2}

and the tube part as

{p | IGF(p)<τ1, SDF(p)<τ2},

where τ1, τ2 are user-specified thickness parameters.
Figures 14(a) and (b) respectively show the IGF and the SDF

of the Chair model. Note that all the bars and legs exhibit small
IGF values and small SDF values, while the chair seat as a plate
exhibits large IGF values and small SDF values. Therefore, we can
distinguish the seat from tubular shapes by setting proper thick-
ness parameters (see Figure 14(c)). More examples are available in
Figure 15.

7. CONCLUSIONS AND DISCUSSION

We have proposed the concepts, algorithms, and applications of the
IGF. The IGF is in general defined by the shortest p-based geodesic
loop at a point and is therefore invariant under isometry and thus
pose oblivious. Tests on the SHREC’11 dataset show that the IGF,
when combined with SDF, defines a desirable shape signature. Also,
we have shown that the IGF can be applied to detecting tip parts
and tube/plate structures of 3D shapes.

Further efforts are needed to improve the efficiency of computing
the IGF. We observe that the input surface can be decomposed into
separate regions based on the IGF continuity, and inside each region
the shortest geodesic loop based at one point can slide continuously
to that based at another point, using the rubber-band shrinking
technique [Xin et al. 2012; Wu and Tai 2010]. This observation
suggests a potential speed-up solution—first computing the IGF on a
simplified model and then transferring the IGF from the coarse mesh
to the dense version according to the vertex coherence, followed
by refinement using the rubber-band shrinking technique. We will
investigate this speed-up technique in our future work.

Our algorithm for computing the IGF, in its current form, cannot
handle meshes with holes and gaps. Besides, our algorithm works
effectively only with a limited range of noise, that is, when vertex
perturbation is less than one half of the average mesh edge length.
These limitations should be addressed in future works because in
practice one often encounters 3D model representations that have
topological errors or large geometric noise.
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Fig. 15. More examples on detection of tips, tubes and plates.

APPENDIX

A. PROOFS OF LEMMA 4.1 AND LEMMA 4.2

LEMMA 4.1 Suppose the window w popped out from the priority
queue is a pseudosource window rooted at v. Let v′ be a one-ring
neighbor vertex of v. The situation that the loop γ̊p = γ (p, v) ∪
vv′ ∪ γ (v′, p) defines I (p) belongs to Case 1 if the following
conditions are met:

(1) �(p, v′) ≤ �(p, v);
(2) γ̊p is locally shortest at v and v′;
(3) ‖γ̊p‖ is shorter than the best-so-far p-based geodesic loop.

PROOF. When the pseudosource window w rooted at v is taken
out from the priority queue, the wavefront just arrives at v, and hence
Rg = �(p, v). Let q ∈ vv′ be the point with the same distance to
p in two opposite directions. According to Case 1, we can consider
the possibility that γ̊p = γ (p, v)∪vv′ ∪γ (v′, p) defines I (p) when
the wavefront arrives at v or v′. If �(p, v′) > �(p, v), then it is not
late to consider such a loop until Rg = �(p, v′), that is, when the
pseudosource window rooted at v′ is popped out from the priority
queue. Therefore, it is reasonable to require �(p, v′) ≤ �(p, v). The
second and last conditions are obvious.

LEMMA 4.2 Suppose the window w popped out from the priority
queue is an interval window arriving at the edge e = v1v2, and w−

is an interval window on the reverse edge e−. The situation that the
windows w and w− define I (p) belongs to Case 2 or Case 3 if

(1) �max(w−) + 2 max(‖v1v‖, ‖v2v‖) ≥ �min(w), where v is the
vertex opposite to e, and �max and �min respectively denote the
maximum and minimum geodesic distances given by an interval
window;

(2) The straight line by connecting w and w−’s roots goes through
w and w−’s common interval;

(3) The new loop γ̊p is shorter than the best-so-far p-based
geodesic loop.

PROOF. It is easy to See that Rg = �min(w) when w is popped
out from the priority queue. Let q be the point at the same distance
to p in two opposite directions. Case 2 or Case 3 (see Figure 5)
implies that q must be inside the face incident to e or e−. With
loss of generality, we assume that q lies in the face incident to e,
that is, the triangle face �vv1v2. Since it is sufficient to consider
the possibility of forming the shortest p-based geodesic loop when
either w or w− is popped out from the priority queue, we consider

w in this case. Obviously, we have

�min(w) ≤ �(p, q) + max(‖v1v‖, ‖v2v‖)

and

�max(w−) ≥ �(p, q) − max(‖v1v‖, ‖v2v‖).

Combining them together, we prove the necessity of the first con-
dition. The second and last conditions are straightforward.
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Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for
retrieving highly relevant documents. In Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, New York, NY, 41–48.

Andrew E. Johnson and Martial Hebert. 1999. Using spin images for efficient
object recognition in cluttered 3D scenes. IEEE Trans. Pattern Analy.
Mach. Intell. 21, 5 (1999), 433–449.

Ron Kimmel and James A. Sethian. 1998. Computing geodesic paths on
manifolds. Proc. Natl. Acad. Sci. U.S.A 95, 15 (1998), 8431–8435.

Zhenzhong Kuang, Zongmin Li, Xiaxia Jiang, Yujie Liu, and Hua Li. 2015.
Retrieval of non-rigid 3D shapes from multiple aspects. Computer-Aided
Des. 58 (2015), 13–23.

Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi, Jeroen
Hermans, Shun Kawamura, et al. 2011. SHREC’11 track: Shape retrieval
on non-rigid 3D watertight meshes. 3DOR 11 (2011), 79–88.

Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi, Jeroen
Hermans, Shun Kawamura, et al. 2013. A comparison of methods for
non-rigid 3D shape retrieval. Pattern Recogn. 46, 1 (2013), 449–461.

Roee Litman, Alex Bronstein, Michael Bronstein, and Umberto Castel-
lani. 2014. Supervised learning of bag-of-features shape descriptors using
sparse coding. Comput. Graph. Forum 33, 5, 127–136.

Yong-Jin Liu. 2013. Exact geodesic metric in 2-manifold triangle meshes
using edge-based data structures. Computer-Aided Des. 45, 3 (2013),
695–704.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen,
Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014.
Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph.
33, 4 (2014), 1–10.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012.
Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph.
31, 6 (2012), 129.

Michael Martinek, Matthias Ferstl, and Roberto Grosso. 2012. 3D shape
matching based on geodesic distance distributions. In Vision, Modeling &
Visualization. The Eurographics Association, 219–220.

Ivan Mendoza. 2011. Local features for partial shape matching and retrieval.
In Proceedings of the 19th ACM International Conference on Multimedia
(MM’11). ACM, New York, NY, 853–856.

J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. 1987. The discrete
geodesic problem. SIAM J. Comput. 16, 4 (1987), 647–668.

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin.
2002. Shape distributions. ACM Trans. Graph. 21, 4 (2002), 807–832.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and
Leonidas Guibas. 2012. Functional maps: A flexible representation of
maps between shapes. ACM Trans. Graph. 31, 4 (2012).

Ofir Pele and Michael Werman. 2009. Fast and robust earth mover’s dis-
tances. In IEEE 12th International Conference on Computer Vision. IEEE,
Washington, DC, 460–467.

Konrad Polthier and Markus Schmies. 1999. Geodesic flow on polyhedral
surfaces. In Data Visualization’99. Springer, Berlin, 179–188.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth
mover’s distance as a metric for image retrieval. Int. J. Comput. Vision
40, 2 (2000), 99–121.

Ariel Shamir, Lior Shapira, Daniel Cohen-Or, and Rony Goldenthal. 2004.
Geodesic mean shift. In Proceedings of 5th Korea Israel Conference on
Geometric Modeling and Computer Graphics. 51–56.

Lior Shapira, Shy Shalom, Ariel Shamir, Daniel Cohen-Or, and Hao Zhang.
2010. Contextual part analogies in 3D objects. Int. J. Comput. Vision 89,
2–3 (2010), 309–326.

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. 2008. Consistent mesh
partitioning and skeletonisation using the shape diameter function. Vis.
Comput. 24, 4 (2008), 249–259.

M. Sharir and A. Schorr. 1986. On shortest paths in polyhedral spaces. SIAM
J. Comput. 15, 1 (1986), 193–215.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser.
2004. The Princeton shape benchmark. In Proceedings of the Shape Mod-
eling International (SMI’04). 167–178.

Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh, Sylvain
Bouix, and Sven Dickinson. 2008. Retrieving articulated 3D models using
medial surfaces. Mach. Vis. Appl. 19, 4 (2008), 261–275.

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher.
2014. Earth mover’s distances on discrete surfaces. ACM Trans. Graph.
33, 4 (July 2014), 67:1–67:12.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and prov-
ably informative multi-scale signature based on heat diffusion. Comput.
Graph. Forum 28, 5 (2009), 1383–1392.

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and
Hugues Hoppe. 2005. Fast exact and approximate geodesics on meshes.
ACM Trans. Graph. 24, 3 (2005), 553–560.

ACM Transactions on Graphics, Vol. 35, No. 3, Article 25, Publication date: March 2016.

http://dx.doi.org/10.1145/1409060.1409100
http://dx.doi.org/10.1145/1409060.1409100


25:14 • S.-Q. Xin et al.

Johan W. H. Tangelder and Remco C. Veltkamp. 2008. A survey of content
based 3D shape retrieval methods. Multimed. Tools Appl. 39, 3 (2008),
441–471.

Wilbur C. K. Wong and Albert Chung. 2008. Principal curves to extract
vessels in 3D angiograms. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW’08). 1–8.

Chunlin Wu and Xuecheng Tai. 2010. A level set formulation of geodesic
curvature flow on simplicial surfaces. IEEE Trans. Visualiz. Comput.
Graph. 16, 4 (2010), 647–662.

Ying He, Xiang Ying, and Shi-Qing Xin. 2014. Parallel Chen-Han (PCH)
algorithm for discrete geodesics. ACM Trans. Graph. 33, 1 (2014), 57–76.

Shi-Qing Xin, Ying He, and Chi-Wing Fu. 2012. Efficiently computing exact
geodesic loops within finite steps. IEEE Trans. Visualiz. Comput. Graph.
18, 6 (2012), 879–889.

Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s algo-
rithm on the discrete geodesic problem. ACM Trans. Graph. 28, 4, Article
104, 8 pages.

Xiang Ying, Xiaoning Wang, and Ying He. 2013. Saddle vertex graph
(SVG): A novel solution to the discrete geodesic problem. ACM Trans.
Graph. 32, 6 (2013), 170.

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural
analysis. ACM Trans. Graph. 32, 4, Article 137, 12 pages.

Henrik Zimmer, Marcel Campen, and Leif Kobbelt. 2013. Efficient com-
putation of shortest path-concavity for 3D meshes. In Proceedings of
the 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’13). 2155–2162.

Received October 2014; revised August 2015; accepted December 2015

ACM Transactions on Graphics, Vol. 35, No. 3, Article 25, Publication date: March 2016.


