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Neural Networks
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Abstract—Detecting points of interest on 3D shapes is a
fundamental research problem in geometry processing. Due to
the complicated relationship between points of interest and their
geometric features, detecting points of interest on any given 3D
shape remains challenging. Due to the lack of training data,
previous data-driven methods for detecting 3D points of interest
mainly focus on utilizing hand-crafted geometric features to
predict the probabilities of each point being a POI, which greatly
limits detection performance. In this paper, we propose a novel
algorithm for detecting 3D points of interest by using projective
neural networks. Our method first projects the labeled training
3D shapes into multiple 2D views and then learns the required
features from the 2D views in an end-to-end fashion. The points
of interest on test 3D shapes are then automatically detected
by applying the learned neural network and our improved
density peak clustering. Our method relies neither on hand-
crafted feature descriptors nor a large quantity of expensive 3D
training data to obtain satisfactory results. Experimental results
show significantly superior detection performance of our method
over the state-of-the-art methods.

Index Terms—3D shapes, Point of interest, Convolutional
neural networks

I. INTRODUCTION

Oints of interest (POIs), also known as feature points, are

usually defined as distinctive points on the surface of 3D
shapes. POIs play a crucial role in many geometry processing
tasks, such as viewpoint selection [1], shape enhancement [2],
shape retrieval [3], [4], [S], mesh registration [6], [7] and mesh
segmentation [8].

POIs can be easily distinguished from other points on 3D
shapes by human visual perception. However, it is not easy to
accurately define POIs from a geometric perspective, although
they are definitely related to geometric features [9], [10].
Therefore, automatically detecting POIs conforming to human
visual perception remains a challenging problem.
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Fig. 1. POlIs detected by our approach.

There is a common understanding that judging whether a
point is a POI is subjective because different people may have
different opinions about POIs. Based on the above observation,
data-driven methods are applied to efficiently detect POIs
on 3D shapes [9]. With recent advances in related research
areas, deep learning has been introduced for detecting POIs
on 3D shapes [11] to obtain satisfactory results by learning a
complicated mapping between the geometric features and the
probability value of being a POI for each point on the surface.

However, the scarcity of 3D training data forces learning-
based methods to heavily rely on hand-crafted geometric
features instead of directly learning features from raw data
because acquiring high-quality training data for 3D shapes is
much more expensive than acquiring 2D images. This greatly
limits them from gaining better detection performance. In
addition, the discrepancy between subjective human visual
perception and geometric features on 3D shapes also prevents
this kind of method from achieving a more satisfactory per-
formance.

In this paper, we propose a novel algorithm for detecting
3D points of interest on 3D shapes with projective neural
networks. Our method learns features in an end-to-end way
and can still lead to robust results despite a limited number of
training 3D shapes, which is very different from other deep
learning-based POI detection methods for 3D shapes. It is
worth noting that our approach can accurately capture features
that agree with human perception by learning from multiple
projected 2D shaded images and depth images, which naturally
corresponds to human vision.

Given a training 3D shape, our method generates a proba-
bility distribution of each point being a POI on the surface and
maps it into multiple 2D views. The probability distribution
information is then robustly learned from them to construct a
projective neural network in our method. Finally, the POIs on
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test 3D shapes are predicted by applying the learned projective
neural network and our improved density peak clustering
method. Figure 1 shows an example of POIs detected by our
method.

Our method is evaluated on the SHREC 2011 non-rigid
3D shape dataset [12]. The dataset contains 600 different 3D
shapes, and each one is manually labeled by volunteers to
obtain the ground truth data. Extensive experimental results
show that our method obtains significantly better performance
than the state-of-the-art with various measures, including false
negative error (FNE), weighted miss error (WME), false
positive error (FPE), area under the ROC curve (AUC), and
linear correlation coefficient (LCC).

Our contributions are two-fold:

¢ Our method is end-to-end, robust, and can achieve better
performances than traditional methods; it can obtain a
good performance even if only a small number of training
samples are provided.

e Our method is completely data-driven, and the perfor-
mance can be improved further as long as sufficiently
many labeled ground truth samples are provided.

The remainder of the paper is organized as follows. In
Section II, we introduce the related work on POI detection.
The overall workflow of our proposed method is described in
Section III, followed by the details of our projective neural
networks. After that, we show extensive experimental results,
as well as a comparison to the state-of-the-art methods, in
Section IV. Finally, we discuss the limitations and future work
in Section V and conclude this paper in Section VI.

II. RELATED WORK

In this section, we review the different algorithms and
technologies related to our work. First, we review the previous
research work on POI detection of 3D shapes. Second, we
discuss the topic of mesh saliency, which is very similar to POI
detection. Third, we introduce some applications of projection-
based methods in the digital geometry processing field.

A. POIs detection

3D POI detection aims to extract distinctive salient points
aligned with human perception. According to the differences in
distinguishing features, previous 3D POI detection algorithms
can be divided into two kinds: hand-crafted feature-based
algorithms and learning-based algorithms. Early work mostly
used hand-crafted features to extract the most representative
points on 3D shapes. Recently, machine learning has been in-
troduced into the geometry processing area and shows superior
performance in detecting 3D POlIs.

Early on, studies relied on various hand-crafted features to
detect POIs of 3D shapes, such as shape diameter function
(SDF), scale-invariant heat kernel signatures (SIHKS), and
wavelet kernel signatures (WKS). For example, Gelfand et
al. [13] proposed the integral volume descriptor, which is
invariant to rotation and translation of the model based on
local geometry for each vertex. A small set of vertices can be
selected as the POIs according to the uniqueness of the integral
volume descriptor. Castellani et al. [14] used a statistical
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descriptor, which contains the 3D saliency measure defini-
tion, multi-scale representation, and feature point detection.
They extracted sparse salient points by a statistical learning
approach using contextual 3D neighborhood information. Zou
et al. [15] defined another shape descriptor that extracts the
POIs with detected scales. In their approach, salient points
are detected from the surface of shapes using the difference
of Gaussian (DoG) function in geodesic scale space. Instead
of computing the descriptors on meshes, Godila et al. [16]
extracted geometric features of 3D shapes based on the voxel
grid. They identified invariant POIs inspired by the scale-
invariant feature transform (SIFT) algorithm. DoG function
is also used to compute the saliency of 3D shapes.

In recent years, machine learning has been extensively used
in digital geometry processing. Creusot et al. [17] presented a
pioneer learning-based POI detection method. Their research
focused on 3D face shapes. By using various geometrical
descriptors, the machine learning model can generate the key
point score map with respect to the human-labeled POIs. Teran
et al. [18] proposed an approach to detect POIs by using
machine learning. They formulated the POI detection task as a
binary classification problem of vertices on the surface. Their
method extracted POIs from an unlabeled model by a trained
random forest classifier. In particular, the labeled POIs are
only a small part of the vertices, and they use resampling to
address the imbalanced learning problem. Similar to [18], Shu
et al. [11] also employed the stacked auto-encoder algorithm.
They devised two separate deep neural networks with SAE to
learn and predict POIs on 3D shapes. The first deep neural
network was trained to predict the category of each shape.
The second deep neural network was trained to predict the
probability of each vertex being a point of interest. Finally,
they used a clustering center detection method to extract the
peak points of the high probability areas on the surface as
POIs. You et al. [19] proposed an automatic aggregation
method to detect POIs. The correspondences between the POIs
and the vertices on the test 3D shapes can be generated through
the minimization of a fidelity loss.

B. Mesh saliency

The mesh saliency detection task is very close to POI
detection. The former aims to extract saliency regions on the
mesh rather than saliency points. Liu et al. [20] classified
previous mesh saliency detection methods into two classes:
local contrast (LC) methods and global contrast (GC) methods.

Local contrast (LC) methods assume that the salient regions
should be distinctive from their surrounding areas [21]. Thus,
mesh saliency can be detected by computing geometric feature
deviations from adjacent regions. Similar to POI detection
methods, Gal et al. [22] and Jia et al. [23] defined new local
surface descriptors to calculate the mesh saliency. Inspired
by Harris et al. [24], who proposed a feature point detection
method for 2D images, [25] and [26] extended the Harris
operator into saliency region detection of 3D shapes. Tasse
et al. [27] proposed a cluster-based mesh saliency detection
method that can attain good results without using any topo-
logical information.
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Fig. 2. The overall workflow of our algorithm. In the training phase, the POIs are expanded onto the surface of 3D shapes. The shapes are projected into
multiple 2D views, and a deep convolutional neural network is trained to capture the POIs’ distribution in the 2D views. In the test phase, our algorithm
predicts the probability distribution of each POI on multiple projected 2D views of the test shape. The final predicted POIs on the surface of the test 3D
shape are obtained by merging the corresponding predicted results on 2D views.

Global contrast (GC) methods aim to detect salient com-
ponents from an overall model perspective. Song et al. [28]
proposed a mesh saliency detection method based on the
conditional random field framework. Sipiran et al. [29] pre-
sented a method to detect key components on 3D meshes.
The 3D Harris operator was employed to distinguish the key
components and common parts. Jeong and Sim [30] provided a
view-independent and view-dependent unified mesh saliency
detection method. By using a face-based structure detector,
they obtained multi-scale saliency on semi-regular meshes.

C. Projection-based 3D shape analysis

Projection-based methods are important in 3D shape anal-
ysis. For example, Su et al. [31] proposed a projection-
based method for 3D shape recognition by using convolu-
tional neural networks. Their method projects a 3D shape
into 12 different views, and a view pooling layer is used
to connect the convolutional neural networks. To address
the high computational cost of the projection-based method,
Yang et al. [32] presented a network structure combining a
multi-view and extreme learning machine auto-encoder. Their
algorithm performs well in both classification accuracy and
computational efficiency. Kalogerakis et al. [33] introduced a
projection-based method for shape segmentation. They used
more projections at different distances and angles to train
fully convolutional network modules. Depth images containing
distance information from cameras to different regions of the
model are also used to improve the performance.

III. METHOD

In this section, we introduce our POI detection method
in detail. The overall workflow of our algorithm is shown
in Figure 2. Our approach consists of two steps. In the
training step, each training 3D shape is mapped into multiple
2D views, and convolutional neural networks are trained to
extract features from them. After that, a probability distribution
of POIs on a test 3D shape can be predicted by applying

the trained neural networks. The POIs on a test 3D shape
are finally extracted by applying our improved density peak
clustering method.

A. Training data preparation

Providing a sufficient quantity of training data is one of
the key factors to obtain satisfactory performance for most
of the data-driven approaches, especially for deep learning-
based approaches. However, due to the complexity of 3D
shapes, preparing 3D training data for geometry processing
tasks is usually a very expensive and tedious task. To facilitate
extracting the desired features for POI detection with only
a few training samples, we use the weights of pretrained
convolution layers when building our convolutional neural
networks. Similar to Su et al. [31], our method projects the
training 3D shapes into multiple 2D views and trains the
convolutional neural networks in an end-to-end way on the
projected 2D views.

The input of projective neural networks. The input images of
our projective neural networks are the projections of 3D shapes
in different directions. Figure 3 presents our projection process
for a Rabbit model. For each shape, we defined 26 virtual
cameras in different positions. The cameras are placed at
distances of the shape’s bounding sphere radius. We randomly
set a direction as the initial azimuth and put the first camera
(camera 1) at that position. Then, another 7 virtual cameras
(cameras 2 to 8) are fixed along the equator at every 45-degree
angle. When the longitude of the elevation angle reaches 45
and -45 degrees, another 16 virtual cameras (cameras 9 to 16
and cameras 17 to 24) are placed in the same azimuths as
cameras 1 to 8. The last 2 cameras are placed on the poles. In
addition, each camera is rotated 4 times in 90-degree intervals
to increase the training dataset.

After obtaining the shaded and depth images for each 3D
shape, we transform the single-channel images into a three-
channel image. As shown in Figure 3, we set the positive
depth images to the first channel as the input images for
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Fig. 3. The projection process. We set 26 cameras around the 3D shape to
render shaded images and depth images. Then, the two kinds of single-channel
2D images are combined into three-channel images.

V4

& {a
S FK¢T

of
Labeled shapes Probability distribution

9 [

images

Project J
* N

q - < e ﬁ 4 Jl

| Pixel labeled ,

Fig. 4. The smoothing process of POIs. We expand the human-labeled POIs
into a probability distribution on the surface and then project it into 2D images.

projective neural networks, set the shaded image to the second
channel, and set the negative depth image to the third channel.
Examples of the input images generated in this way are shown
at the bottom of Figure 3. In this paper, 104 projections are
generated for each 3D shape in total, which can cover almost
all vertices and facets for each shape in the dataset used in our
experiments, although more projections can be used if desired.

The output of projective neural networks. The outputs of
projective neural networks are the corresponding projected
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images of labeled shapes at the same elevation and azimuth.
However, human-labeled POIs are usually a few vertices on
the mesh. Therefore, directly using the projected images of
those labeled shapes in the training process will lead to an
extremely imbalanced distribution of positive and negative
samples. Thus, we construct a probability distribution P on
the surface of each 3D shape based on normal probability
density. P is generated as a distribution decaying with the
geodesic distances from their nearest POIs. We define P on
any vertex v; as:

1

oV 2

P(v;) = eXp—(d(vi,m))z/(%z), (1)

where d (v;,p;) is the geodesic distance from the vertex v,
to its nearest POI p;. o is a parameter that can be used to
control the decay speed. In this paper, o is set to one-fifth of
the maximum geodesic distance. A visualized example of P
can be found in Figure 4. The closer to the POlIs, the higher
the value of P the vertex has. In our method, the probability
distribution P is mapped to all 2D images projected from 3D
shapes, which are used as the output of our projective neural
networks. Examples of the output images are shown at the
bottom of Figure 4.

B. Training and predicting

Training process. In the training process, the projective
neural networks take the 2D images of 3D shapes as input
and the corresponding labeled images as output. Our neural
network tries to learn the mapping from each pixel of input
images, which contains shading and depth information of 3D
shapes, to the corresponding pixel of output images, which
contains probability distribution information of whether a
vertex is a POL

We construct a projective neural network to predict the
probability distributions on 2D views of shapes. As shown in
Figure 5, we design the convolutional layers (encoder network)
as the feature extractor of 2D views. The Conv + BN +
ReLU and pooling layers constitute the encoder network. The
decoder network is constructed with upsampling and Conv
+ BN + ReLU layers. The upsampling layers receive the
corresponding pooling indices (i.e., positions of the largest
values in each pooling operation) from the pooling layers.
Each feature value will be set in the position according to
the pooling indices to produce sparse feature maps. The Conv
layers after the upsampling layers are used to produce dense
feature maps. Finally, the feature maps are fed to the softmax
layer to classify each pixel independently.

It is worth noting that even though we construct the prob-
ability distribution, instead of directly using the projected
images (usually binary images) of labeled shapes, we still
face imbalanced distributions in training samples. In our
experiments, we observe that the positive samples (pixels)
are only approximately 7.5 percent of the output images.
This negatively impacts the prediction performance of our
network. Therefore, we adopt class weighting to balance
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Fig. 5. Our projective neural network. The first four Conv + ReLU and pooling layers can be seen as an encoder network. The four upsampling and Conv
+ ReLU layers can be seen as a decoder network. The upsampling layers receive corresponding indices from the pooling layers. According to the proportion
of different classes, the weighted pixel classification layer is added after the softmax layer for class balancing.
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of POIs on the 2D views in our algorithm. The corresponding probability
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information from all 2D views.

different classes of samples. In our method, the weight wy
for the kth class of samples is defined as:

1

— 2
Wk/Ek:Wk’ 2

WE =

where W), represents the number of samples (pixels) in the kth
class for an image. Then, the weights wy, are used to establish
a weighted pixel classification layer with cross-entropy loss.
The loss function is defined as:

L=- Z Z Witkm 10 Yim,

m k

3)

where m is a pixel on the output image, ty,, is the ground-
truth probability that pixel m belongs to the kth class, and
Ykm 1S the predicted probability that pixel m belongs to the
kth class. The last layer of our network, the weighted pixel
classification layer, is composed of wy, i.e., the weights of
classes for each pixel.

Prediction process. Given a test 3D shape, our method first
projects it into a set of 2D images that contain shading and
depth information, as described in Section III. Then, predicted
probability distributions are obtained by applying our trained
neural network.
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Fig. 7. The extracting process of POIs.

After obtaining probability distributions of whether a vertex
is a POl in the form of a set of 2D images, our method directly
maps the probability distributions back to the surfaces of 3D
shapes according to the relationship between pixels of 2D
images and vertices of 3D shapes recorded during the pro-
jection. Note that one vertex may occur in multiple projected
2D images. We use the following strategy to determine the
predicted probability Q; of whether the vertex v; is a POI or
not on a 3D shape.

0 , no pixel corresponds to vertex v,

Qi = ﬁ:l Qi,j (4)

, npixels correspond to vertex v;,

where ¢; ; is the predicted value on the jth pixel corresponding
to the vertex v;. Most of the vertices of 3D shapes can be
found in at least one projected image, and the corresponding
probability can be calculated as the average value of pixels.
However, there may still be a few vertices that cannot be
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observed in any projected images. Usually, increasing the
number of views in the projection process can help to alleviate
this situation. Alternatively, we set the corresponding values
to 0 by default. An example of the predicted probability
distribution @); is shown in Figure 6, where the vertices in
the red region have high probabilities of being POlIs.

C. Detecting the POls

We obtained the probability distribution of being a POI for
each vertex on test shapes. In general, POIs do not contain spe-
cial features that can be used to distinguish them from ordinary
vertices. Our goal is to detect the specific POIs on shapes by
the predicted probability distribution. It can be understood as
extracting the points with the local highest probability values
on the surfaces of 3D shapes. In our method, we propose
an improved density peak clustering algorithm to extract the
POIs from predicted probability distributions. The main idea
of the traditional density peak clustering method [34] is to
find those points with local maximal density. However, the
method lacks mechanisms to automatically extract those peak
points, although it can provide some visual hints to make
distinguishing peak points easier. Therefore, we improve the
method and build a novel method for automatically extracting
the desired peak points in this paper.

For each vertex v;, let p; denote the corresponding prob-
ability value of v;. On the other hand, we define §; as the
influence radius of v;:

oo =tog (i, (@sio)+1). O

where d(v;,v;) is the geodesic distance between vertices v;
and v;. Actually, minj.q,>q,(d(v;,v;)) denotes the geodesic
distance between vertex v; and its nearest vertex v;, which
has a higher probability value than v;. We map all the vertices
on a 3D shape to a two-dimensional decision graph, where
the horizontal axis and the vertical axis represent p; and §;,
respectively. On the decision graph, the point at the upper-
right corner that has both large § and large p are regarded
as good candidates for being POIs. As shown in Figure 7, a
region on the upper-right corner of the decision graph needs
to be determined to extract the POIs automatically.

In our method, a data-driven strategy is used to determine
the corresponding ranges on the decision graph. In the training
phase, we learn a separation curve from the ground truth
for each category of training shapes, which can be used to
separate the POIs from other ordinary vertices in the decision
graph. As shown in Figure 7, two reciprocal functions are
used to find the separation curve for POIs and other ordinary
vertices (POIs always appear at the upper-right corner, while
the other ordinary vertices appear around the two axes). The
two functions are defined as:

curvey : 6 = %2 + (Y,

(6)

curvey : § = 072 + Cy,

where p and § are the axes. C; and Cy are variables used to
move the curves up and down. We determine the variable C
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by moving down the curve; as much as possible and making
sure it goes through at least one POI. Similarly, we move up
curves and ensure that it goes through at least one ordinary
vertex on the decision graph to determine Cs. We define the
separation curve as

0.2

Ci1+C
curves : 6 = ——&—g.
p

2

In the testing phase, the learned curves can be used to deter-
mine the region where POIs appear. The vertices positioned to
the right and above of curves are regarded as POIs. We map
the extracted points back to 3D shapes, and POIs are finally
detected.

)

D. Algorithm

The training and testing process of our POI detection
method is executed on each category of shapes. Our method
can be summarized as follows.

Algorithm: POIs detection method

Inputs:

Training 3D shapes and human-labeled POIs
Outputs:

POIs on test 3D shapes

Training process:

Step 1: Obtain 2D views of 3D shapes and generate
corresponding input 2D images by combining
shaded images and depth images;

Step 2: Compute probability distribution P of POIs
and obtain labels for every pixel on the images;
Step 3: Train the convolutional neural network using

the training data prepared in Step 1 and 2.

Testing process:

Step 1: Generate 2D views for test shapes;

Step 2: Predict the probability distributions with the
trained neural network;

Step 3: Obtain probability distributions on the surfaces
of 3D shapes;

Step 4: Extract POIs on test shapes using our improved

density peak clustering algorithm.

IV. EVALUATION

In this section, we present experimental validation and
analysis of our method compared with other state-of-the-art
approaches.

A. Dataset and evaluation metrics

To evaluate the performance of our method, we employ
data from the SHREC 2011 non-rigid 3D shape dataset [12],
the SHREC 2014 non-rigid 3D human model dataset, and
the SHREC 2020 non-rigid shape dataset. The SHREC 2011
dataset is an open dataset that consists of 600 non-rigid 3D
shapes in 30 categories and 20 3D shapes in each category.
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Fig. 8. Some example models of the SHREC 2011 non-rigid 3D shapes
dataset.

Some example shapes are shown in Figure 8. The SHREC
2014 dataset consists of 400 3D human shapes that are
obtained by scanning real human volunteers. The SHREC
2020 dataset is also obtained by scanning the real objects.
It contains 11 partial scans and one full scan of a stuffed toy
Rabbit. The SHREC dataset is widely used for benchmarking
various geometry processing algorithms, such as 3D model
classification [35], segmentation [36], and POI detection [11].
We first test the performance of our algorithm on the SHREC
2011 dataset. Ten shapes are randomly selected as the training
shapes for each category of shapes, and the remaining 10
shapes are regarded as the test shapes. The training and testing
data in our test are obtained from manual labeling. We asked
5 volunteers to label the POIs on the surface of 3D shapes
using a small application we developed.

The evaluation method proposed by Dutagaci et al. [10] is
adopted to measure the performance of different algorithms.
This evaluation method consists of three evaluation metrics,
the false negative error (FINE), false positive error (FPE), and
weighted miss error (WME). We express the set of ground
truth POIs as G and express the set of POIs detected by
algorithms as A. Assume that IV, is the number of points in
set G, and NN, is the number of points in set A. By setting a
localization error tolerance radius r, the “correctly detected”
points a by algorithms can be defined as the points in the
r—neighborhood of ground truth points g. The “corrected
detected” point set is expressed as C, i.e., C(g;) = {g; €
G|d(a,g;) < r}, where d(a,g;) corresponds to the geodesic
distance between points a and g;. N, denotes the number of
“corrected detected” points by algorithms. While n; subjects
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have marked the p; as a POI, those three metrics can be defined

as:
ENE(r)=1-— %=,

Q

FPE(r)=1- %=,

a

(®)
Ng
Z n;04
WME (r) =1 — S —,
3
i=1

where

1
Oi:{o

FNE and FPE evaluate the algorithms’ performance by
counting the “correctly detected” points or missing points
in the localization error tolerance radius r. WME analyzed
the significance level of every ground truth point of human
perception. A better detection method achieves lower FNF,
FPE, and WME.

In addition, we also adopt another evaluation framework
presented in [37]. The authors introduced two metrics for
quantitative analysis and comparison of mesh saliency detec-
tion methods, including area under the ROC curve (AUC') and
the linear correlation coefficient (LC'C'). The receiver operat-
ing characteristic (ROC) curve illustrates the accuracy of true
positive POI detection with different discrimination thresholds.
AUC is the area under the ROC curve and varies between 0
and 1. A higher AUC' value means better performance of the
detection method. LC'C' evaluates the strength of the linear
relationship between the shape saliency map of the detection
method and its ground truth saliency. Similar to the two above
methods, the saliency detection method with a higher LC'C
value performs better.

if g; is detected by the algorithm,
otherwise.

B. Experimental results

As mentioned in Section III, our method detects the POIs
of 3D shapes in a supervised way. In the first stage, the
3D training shapes and the labeled POIs are projected into
2D views. In the second stage, we train neural networks to
predict the probability distribution of being POIs for each
vertex. Our networks are trained by mini-batch stochastic
gradient descent (SGD). The learning rate is initialized as
0.01. We set the decay rate of the learning rate to 0.9 and
set decay steps to every 10 steps. It is worth noting that the
initial weights are loaded from the pretrained encoder-decoder
model. We first train our projective convolutional neural net-
work using the CamVid [38] dataset. Then, the weights of
the corresponding convolution kernels are loaded into the POI
detection task model as initial weights. In our experiments,
using the pretrained weights can make the model converge
faster and achieve better POI detection performance. The POIs
are finally extracted by clustering. Figure 9 presents some
specific detection results of our method. In the figure, we can
see that satisfactory probability distributions are well predicted
for test shapes, from which one can easily distinguish the
desired POIs from other vertices. POIs on the test shapes
are extracted by the learning-based density peak extraction
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Fig. 10. Some representative POI detection results of our method on the
SHREC 2011 dataset.

strategy, which is explained in Section III. Figure 10 shows
the representative POI detection results of our method. In the
figure, we can see that the results of our method are very
consistent with human visual perception.

Next, we quantitatively evaluate the performance of our
method using the metrics FNE, FPE, and WME. Table 1
presents measured numerical results with different localization
error tolerance radius r. Each value in Table I is averaged over
all shapes in 30 categories. As mentioned in Subsection IV-A,
given a localization error tolerance radius r, lower scores
of FNE, FPE, and WME represent the better performance
of the detection method. We can see that the three error
rates decrease rapidly when the localization error tolerance
r increases, although they are relatively high when 7 is very
small. A rapid decrease in the three metrics means our method
catches the POIs with a low localization error. This indicates
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TABLE I
EVALUATION OF OUR POI DETECTION RESULT ON THE SHREC 2011
DATASET USING THE EVALUATION METRICS FNE, FPE, AND WME
WITH DIFFERENT LOCALIZATION ERROR TOLERANCE 7.

Tolerance radius Average Average Average
r FNE FPE WME
0.00 0.8802 0.9427 0.8936
0.01 0.5623 0.6233 0.4756
0.02 0.2865 0.3895 0.2789
0.03 0.1360 0.3324 0.1865
0.04 0.1050 0.2857 0.1437
0.05 0.1033 0.2450 0.1220
0.06 0.1009 0.2144 0.1014
0.07 0.0974 0.2017 0.0929
0.08 0.0943 0.1985 0.0850
0.09 0.0919 0.1968 0.0805
0.10 0.0831 0.1920 0.0775
0.11 0.0795 0.1918 0.0732
0.12 0.0759 0.1869 0.0690
0.13 0.0751 0.1824 0.0675
0.14 0.0750 0.1786 0.0652

that the POIs detected by our method are very close to the
ground truth in most cases. In addition, the three error rates
do not decrease significantly when the tolerance radius r is
larger than 0.07. The FNE decreases steadily to 0.08, i.e.,
approximately 92% of POIs can be detected by our method
even with a small tolerance radius r = 0.07.

C. Comparison with other methods

To further evaluate the POI detection performance of our
method, we compare it with other methods, including 3D-
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TABLE II
THE AUC VALUES OF DIFFERENT DETECTION ALGORITHMS ON THE SHREC 2007 NON-RIGID 3D SHAPES DATASET. WE COMPARE OUR METHOD WITH
MULTIPLE FEATURES (MF) POISs [11], CLUSTER-BASED POINT SET SALIENCY (CS) [27], SALIENCY OF LARGE POINT SETS (LS) [39], MESH SALIENCY
VIA SPECTRAL PROCESSING (MS) [40], AND PCA-BASED SALIENCY (PS) [16]. A HIGHER SCORE REPRESENTS BETTER PERFORMANCE.

Algorithms Ours MF CS LS MS PS
Human 0.6531 0.6754 0.5745 0.5893 0.5695 0.5921
Cup 0.6527 0.6459 0.6122 0.6192 0.5934 0.6135
Glass 0.6507 0.6351 0.5225 0.5727 0.5297 0.5530
Airplane 0.7043 0.6625 0.6308 0.6705 0.6160 0.6409
Ant 0.6651 0.6524 0.6056 0.6349 0.5696 0.5791
Chair 0.7012 0.7562 0.5871 0.6566 0.5505 0.5799
Octopus 0.6235 0.6694 0.5480 0.6237 0.5342 0.5726
Table 0.6918 0.6738 0.6313 0.6651 0.5802 0.6168
Teddy 0.7411 0.7584 0.5671 0.5641 0.5530 0.5682
Hand 0.6565 0.6341 0.6060 0.6339 0.5763 0.6022
Plier 0.6264 0.6537 0.5997 0.6236 0.5615 0.5754
Fish 0.6312 0.6039 0.6651 0.6717 0.6309 0.6736
Bird 0.6695 0.6637 0.6010 0.6217 0.5627 0.5984
Spring 0.6241 0.6351 0.5512 0.5545 0.5523 0.5339
Armadillo 0.6936 0.6825 0.6560 0.6656 0.5996 0.6570
Buste 0.6703 0.6814 0.6236 0.6260 0.5620 0.6352
Mechanic 0.6851 0.7359 0.6964 0.6932 0.5325 0.7065
Bearing 0.7085 0.6537 0.6472 0.6387 0.4986 0.6322
Vase 0.6809 0.6328 0.6158 0.6217 0.6058 0.6251
Four-legged 0.6981 0.6235 0.6024 0.6168 0.6005 0.6112
Average 0.6714 0.6665 0.6072 0.6282 0.5689 0.6083

TABLE III

THE LCC VALUES OF DIFFERENT DETECTION ALGORITHMS ON THE SHREC 2007 NON-RIGID 3D SHAPES DATASET. WE COMPARE OUR METHOD WITH
MULTIPLE FEATURES (MF) POIS [11], CLUSTER-BASED POINT SET SALIENCY (CS) [27], SALIENCY OF LARGE POINT SETS (LS) [39], MESH SALIENCY
VIA SPECTRAL PROCESSING (MS) [40], AND PCA-BASED SALIENCY (PS) [16]. A HIGHER SCORE REPRESENTS BETTER PERFORMANCE.

Algorithms Ours MF CS LS MS PS
Human 0.5506 0.4503 0.2544 0.1895 0.2580 0.3292
Cup 0.3343 0.3769 0.2924 0.3478 0.2444 0.3039
Glass 0.5543 0.5020 0.1201 0.4837 0.4120 0.3353
Airplane 0.6116 0.6328 0.6936 0.6357 0.4876 0.6601
Ant 0.6972 0.6584 0.7356 0.7658 0.3509 0.3357
Chair 0.7076 0.7326 0.5152 0.6995 0.2723 0.3652
Octopus 0.7701 0.6066 0.2228 0.4654 0.2467 0.3565
Table 0.6774 0.5947 0.5831 0.7111 0.2727 0.3076
Teddy 0.4564 0.5861 0.1184 0.1246 0.1224 0.1188
Hand 0.6269 0.5542 0.5439 0.5372 0.3077 0.3687
Plier 0.7138 0.6447 0.5978 0.6591 0.2945 0.3214
Fish 0.6972 0.6422 0.6967 0.6349 0.4638 0.5889
Bird 0.6966 0.5633 0.5578 0.5690 0.4099 0.5067
Spring 0.6807 0.5764 0.4838 0.5227 0.3977 0.1859
Armadillo 0.7591 0.5249 0.5495 0.4083 0.2627 0.5589
Buste 0.4867 0.4138 0.2540 0.2657 0.1240 0.2755
Mechanic 0.6336 0.7561 0.4064 0.4237 0.0548 0.5756
Bearing 0.4286 0.4836 0.2676 0.3701 0.0316 0.2933
Vase 0.5439 0.4713 0.3673 0.4228 0.3133 0.3285
Four-legged 0.6206 0.5062 0.3819 0.3896 0.3682 0.2861
Average 0.6124 0.5639 0.4321 0.4813 0.2848 0.3701
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Fig. 11. Comparisons of POI detection results between our method and previous methods on the SHREC 2011 dataset. The evaluation metrics FNE, FPE,

and WME are employed to evaluate different methods.
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Fig. 12. The comparisons of POI detection results between our method and previous methods on the hand and horse model.
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Fig. 13. Comparisons of POI detection results between our method and state-of-the-art methods on the SHREC 2014 dataset.

SIFT [16], 3D-Harris [25], HKS-based POIs [41], and multiple
features (MF) POIs [11], on the SHREC 2011 dataset using
the evaluation metrics provided by [10].

As shown in Figure 11, the FNE, FPE, and WME values
of all algorithms are plotted. We can observe the following
facts from the figure. First, the curves of our method are
lower than others. This means that while the localization
error tolerance radius r € [0,0.12] (which is the effective
tolerance radius), our method performs better than the other
four methods with smaller false negative and false positive
errors. Second, on the left side of the graphs where the
localization error tolerance radius r € [0,0.2], our method
exhibits a steep descent in all three charts. This indicates

that there are smaller distances between our POIs and ground
truth POIs. Our method achieves low error rates in a small
tolerance radius 7. Therefore, the positions of our POIs are
more precise. Third, according to the definitions, FINE denotes
the rate of undetected POIs and F'PE denotes the rate of POIs
by false detection. Detecting more POIs may lead to higher
FPE, while detecting insufficient POIs may result in higher
FNE. Therefore, it is not easy to obtain low WME, FNE,
and FPFE values simultaneously. In Figure 11, one can see
that 3D-SIFT and 3D-Harris have lower FNE but higher FPE.
HKS has lower FPE and higher FNE. However, our method
has lower WMFE, FPE, and FINE values than other methods,
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Fig. 14. Some representative POI detection results of our method on the SHREC 2014 and 2020 datasets.
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Fig. 15. The saliency distribution in an intermediate step of our algorithm.

which indicates the best performance our method achieves.

Figure 12 shows a visual comparison of representative POI
detection results among ours and the other methods mentioned
above. We can see that the POI detection results of learning-
based methods (MF and ours) are obviously closer to human-
marked POIs. More importantly, these two methods have fewer
false detected POIs and duplicated detected POIs. In addition,
the positions of our detected POIs are more accurate than
those of MF. This result is consistent with the conclusions
in Figure 11.

The SHREC 2011 dataset consists of synthetic 3D shapes.
To evaluate the feasibility of detecting 3D POIs of our method
on actual data, we test our method on the SHREC 2014 dataset
and the SHREC 2020 dataset, which are both scanned from the
real world. For the SHREC 2014 dataset, 100 shapes are split
into the training set, and the remaining 300 shapes are split
into the test set. For the SHREC 2020 dataset, the full scan is
used as the training set, and the 11 partial scans are used as the
test set. On the SHREC 2014 dataset, we compare the perfor-
mances of our proposed method with other methods, including
MLKP [17], PointNet [42], PointNet++ [43], and GDKP [19].
As shown in Figure 13, our method achieves the lowest error
curves of WME, FPE, and FNE. More performance tests
about the projective network and the resolution of 2D views

are also shown in Figure 13. The visualized POI detection
results of our method can be found in Figure 14. Akilan et
al.[44] introduced the residual blocks in the encoder-decoder
network. To verify whether introducing residual blocks to
our projective neural network can increase the performance,
we add the residual blocks to our projective neural network
by replacing the original convolutional layer sequence and
test the corresponding performance. In addition, we test the
performance of our method with higher-resolution images as
input. All the experimental results are shown in Figure 13.
It can be found that the residual blocks are not significantly
helpful for improving the performance of our method while
using higher-resolution 2D views does make our method
perform slightly better. However, higher resolution also means
more computational resource consumption.

We also evaluate our algorithm by comparison with mesh
saliency methods using the metrics AUC' and LCC'. This is
meaningful because mesh saliency aims at detecting important
regions according to the visual perception of 3D shapes,
while POI detection methods attempt to extract the points
of interest. Thus, we saved the results of the intermediate
step in our algorithm (see Figure 15) and compared them
against five other state-of-the-art methods on the SHREC
2007 dataset. These methods include multiple features (MF)
POIs [11], cluster-based point set saliency (CS) [27], saliency
of large point sets (LS) [39], mesh saliency via spectral
processing (MS) [40], and PCA-based saliency (PS) [16]. The
comparison results are shown in Table II and Table III. AUC'
evaluates how many saliency regions of the ground truth are
detected by the algorithm. MF and our method achieve better
performance on AUC. LCC' evaluates whether the saliency
regions of the ground truth and the algorithm have peaks at
the same place. We find that our method achieves the best
performance on LC'C, which means that the peaks of saliency
regions detected by our method are closest to the ground truth
when compared to those obtained from other methods.
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Fig. 16. The FNE and FPE curves of our method executed on the original
models and the models with noise.
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Fig. 17. Comparisons of POI detection results between applying our improved
density peak clustering algorithm and using the naive NMS method with
different distance thresholds (0.2, 0.3, and 0.4).

D. Robustness and ablation study

To further assess the robustness of our algorithm, we test
it on five categories of 3D shapes containing noise, including
Alien, Ant, Armadillo, Hand, and Man. For each shape, we
add white Gaussian noise to the coordinates of each vertex on
the surface. We test our algorithm on original shapes and noisy
shapes. The performance of our method is measured on the
two kinds of shapes by using FNE and FPFE. Figure 16 shows
the corresponding results. We can see that the performance
measured on the original 3D shapes and the noisy shapes is
very close. Especially when the tolerance radius r is greater
than 0.04, the two error curves appear to almost overlap. This
indicates that the noise added to the shapes only has little
impact on the performance of our algorithm. We can also see
that with the low tolerance radius r € [0, 0.04], both the FNE
and FPFE error curves of noisy shapes are higher than those
of original shapes. The results show that the rugged surfaces
make the POIs detected by our algorithm deviate from the
best positions slightly. In general, our algorithm is robust to
noise because projecting 3D shapes into multiple 2D images
reduces the impact of noise added to shapes.

To show the effectiveness of our improved density peak

(a) FNE
Fig. 18. The comparisons among POI detection results of our method with
different values of o.

(b) FPE
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Fig. 19. The comparisons among POI detection results of our method using
different numbers of 2D views as the input of the projective convolutional
neural network.
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Fig. 20. The comparisons among POI detection results of our method under
different resolutions of 3D shapes.
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clustering for improving the total detection performance, we
compare the results from our method and those from using the
naive non-maximum suppression (NMS) algorithm [45]. In our
experiments, our improved density peak clustering algorithm
and the naive NMS algorithm are applied to the probability
distributions predicted by the projective neural network. The
threshold of the distance is set to 0.2, 0.3, and 0.4 for the
NMS algorithm. The results are shown in Figure 17. We can
see that our algorithm achieves the lowest error rates for both
FNE and FPE.

The parameters ¢ in Equation (1) determine the probability
distributions of POIs and may affect the performance of our
method. Smaller values of o will make the distribution more
concentrated. Figure 18 shows the POI detection performances
under the different values of o, where o = 0.2 denotes o is
set to one-fifth of the maximum geodesic distance, 0.1 means
one-tenth, and so on. The results show that setting o = 0.2 can
achieve lower error rates. We also compare the performance
of our method using different numbers of 2D views as input.
As shown in Figure 19, using more 2D views can make the
observation of 3D shapes more comprehensive and result in
better performance. Therefore, when the POI detection results
are not satisfactory, we recommend using more 2D views of
different perspectives.

We further test the performances of our method for 3D
shapes with different resolutions. For each shape in the
SHREC 2014 dataset, we first simplify it from containing 20K
facets to containing 15K, 10K, and 5K facets, respectively,
using the classic QEM algorithm [46]. Then the performances
are measured with FNE and FPE for 3D shapes with different
resolutions. The experimental results are shown in Figure 20.
From the Figure, we can see that our method achieves very
similar performance on the shapes of 5K, 10K, 15K, and 20K
facets and is robust to different resolutions of 3D shapes.
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TABLE IV
THE AVERAGE RUNNING TIME ON EACH CATEGORY OF 3D SHAPE FOR OUR METHOD, WHERE EACH CATEGORY CONTAINS 20 SHAPES AND EACH SHAPE
CONSISTS OF 12~25K VERTICES.
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Preparation of training data
(15 shapes)

Steps

Training of the neural network

POI extraction
(every shape)

Time (minutes) 10~15

120 0.3~0.5

E. Performance

We implement our algorithm in Matlab and C++. The
performance of our approach is measured on a PC with a 3.20
GHz CPU, 32 GB RAM, and NVIDIA GeForce GTX 1080
Ti GPU. The measured performance is shown in Table IV. On
average, it takes less than 1 minute to transform a 3D shape
into 2D images, 2 hours to train the neural network, and less
than 0.5 minutes to predict and extract the POIs. The inference
process of one image takes approximately 50 milliseconds.
The computational time of our method is mainly spent in the
training process, which takes over 80% of the total time.

V. LIMITATION AND FUTURE WORK

First, the training and testing shapes need to be classified in
advance. We train the convolutional neural network for each
category of shapes and input the test shapes to the neural
network. Second, the training of convolutional neural networks
is very time consuming. Finding a more efficient structure of
neural networks may reduce the training time further, which is
one of our future plans. Third, our method relies on geodesic
distances to measure the distances between any two vertices
on the manifold. However, geodesic distance computation on
3D meshes with high resolutions may consume considerable
computational time. In this case, 3D mesh simplification algo-
rithms may be applied to the input 3D meshes in advance to
reduce their resolutions and the corresponding computational
burden.

VI. CONCLUSION

In this paper, we propose a novel learning-based method
for POI detection of 3D shapes. Instead of computing POI
geometrical features on the meshes, we detect POIs using
multiple projections of 3D shapes, including shaded and
depth images. Our method is well-aligned with human visual
perception. The key idea is to predict a saliency map to encode
the probability of being a POI and then extract typical POIs by
clustering. Our method is data-driven and can predict POIs in
a similar way as humans. Extensive experimental results show
that our method outperforms state-of-the-art approaches.
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